Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 15(6): 1391-1419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36868311

RESUMEN

BACKGROUND & AIMS: Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS: Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS: Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION: We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Fibroblastos/metabolismo , Técnicas de Cocultivo , Organoides/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Colorrectales/patología , Microambiente Tumoral
2.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954222

RESUMEN

Histone deacetylases (HDACs) target acetylated lysine residues in histone and non-histone proteins. HDACs are implicated in the regulation of genomic stability, cell cycle, cell death and differentiation and thus critically involved in tumorigenesis. Further, HDACs regulate T-cell development and HDAC inhibitors (HDACis) have been approved for clinical use in some T-cell malignancies. Still, the exact targets and mechanisms of HDAC inhibition in cancer are understudied. We isolated tumor cell lines from a transgenic mouse model of anaplastic large cell lymphoma (ALCL), a rare T-cell lymphoma, and abrogated HDAC activity by treatment with the HDACis Vorinostat and Entinostat or Cre-mediated deletion of Hdac1. Changes in overall protein expression as well as histone and protein acetylation were measured following Hdac1 deletion or pharmacological inhibition using label-free liquid chromatography mass spectrometry (LC-MS/MS). We found changes in overall protein abundance and increased acetylation of histones and non-histone proteins, many of which were newly discovered and associated with major metabolic and DNA damage pathways. For non-histone acetylation, we mapped a total of 1204 acetylated peptides corresponding to 603 proteins, including chromatin modifying proteins and transcription factors. Hyperacetylated proteins were involved in processes such as transcription, RNA metabolism and DNA damage repair (DDR). The DDR pathway was majorly affected by hyperacetylation following HDAC inhibition. This included acetylation of H2AX, PARP1 and previously unrecognized acetylation sites in TP53BP1. Our data provide a comprehensive view of the targets of HDAC inhibition in malignant T cells with general applicability and could have translational impact for the treatment of ALCL with HDACis alone or in combination therapies.


Asunto(s)
Histona Desacetilasas , Linfoma Anaplásico de Células Grandes , Acetilación , Animales , Cromatografía Liquida , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Ratones , Espectrometría de Masas en Tándem
3.
Life Sci Alliance ; 4(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310759

RESUMEN

Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Epigénesis Genética , Linfoma/etiología , Linfoma/metabolismo , Proteínas Tirosina Quinasas/genética , Animales , Biomarcadores de Tumor , Biología Computacional/métodos , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilación de ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Epigenómica , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfoma/tratamiento farmacológico , Linfoma/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA