RESUMEN
BACKGROUND AND PURPOSE: Stereotactic body radiation therapy (SBRT) has demonstrated safe and effective results for primary liver tumors. Magnetic Resonance guided Radiotherapy (MRgRT) is an innovative radiotherapy modality for abdominal tumors. The aim of this study is to report on acute and late toxicities and initial oncological results for primary liver tumors treated with MRgRT. MATERIALS AND METHODS: We prospectively included in our cohort all patients treated by MRgRT for a primary liver tumor at the Montpellier Cancer Institute. The primary endpoint was acute and late toxicities assessed according to CTCAE v 5.0. The mean prescribed dose was 50 Gy in 5 fractions. RESULTS: Between October 2019 and April 2022, MRgRT treated 56 patients for 72 primary liver lesions. No acute or late toxicities of CTCAE grade greater than 2 attributable to radiotherapy were noted during follow-up. No cases of radiation-induced liver disease (RILD), either classical or non-classical, occurred. After a median follow-up of 13.2 months (95% CI [8.8; 15.7]), overall survival was 85.1% (95% CI: [70.8; 92.7]) at 1 year and 74.2% at 18 months (95% CI [52.6; 87.0]). Local control was 98.1% (95% CI: [87.4; 99.7]) and 94.7% (95% CI: [79.5; 98.7]) at 12 and 18 months, respectively. Among the HCC subgroup, no local recurrences were observed. CONCLUSION: MRgRT for primary liver tumors is safe without severe adverse events and reach excellent local control. Numerous studies are underway to better assess the value of MRI guidance and adaptive process in these indications.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirugía , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/cirugía , Radiocirugia/efectos adversos , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Espectroscopía de Resonancia MagnéticaRESUMEN
Liver stereotactic body radiotherapy (SBRT) is a local treatment that provides good local control and low toxicity. We present the first clinical results from our prospective registry of stereotactic MR-guided radiotherapy (MRgRT) for liver metastases. All patients treated for liver metastases were included in this prospective registry study. Stereotactic MRgRT indication was confirmed by multidisciplinary specialized tumor boards. The primary endpoints were acute and late toxicities. The secondary endpoints were survival outcomes (local control, overall survival (OS), disease-free survival, intrahepatic relapse-free survival). Twenty-six consecutive patients were treated for thirty-one liver metastases between October 2019 and April 2022. The median prescribed dose was 50 Gy (40-60) in 5 fractions. No severe acute MRgRT-related toxicity was noted. Acute and late gastrointestinal and liver toxicities were low and mostly unrelated to MRgRT. Only 5 lesions (16.1%) required daily adaptation because of the proximity of organs at risk (OAR). With a median follow-up time of 17.3 months since MRgRT completion, the median OS, 1-year OS and 2-year OS rates were 21.7 months, 83.1% (95% CI: 55.3-94.4%) and 41.6% (95% CI: 13.5-68.1%), respectively, from MRgRT completion. The local control at 6 months, 1 year and 2 years was 90.9% (95% CI: 68.3-97.7%). To our knowledge, we report the largest series of stereotactic MRgRT for liver metastases. The treatment was well-tolerated and achieved a high LC rate. Distant relapse remains a challenge in this population.
RESUMEN
Purpose: Volumetric Modulated Arc Therapy (VMAT) exhibits potent advantages regarding target volume coverage and protection of organs at risk, notably in the context of anatomical constraints. Nevertheless, reports concerning VMAT for the treatment of synchronous bilateral breast cancers (SBBC) have been scarce to date. As such, we conducted this observational study to assess efficacy, safety and feasibility of VMAT in SBBC. Materials and Methods: From August 2011 to December 2017, 54 consecutive patients with SBBC with or without axillary nodes involvement underwent a treatment protocol containing radiotherapy using VMAT. A total dose (TD) of 52.2Gy in 29 fractions was delivered to breast and internal mammary chain (IMC) nodes Planning Target Volume (PTV) plus, if applicable, a TD of 49.3Gy in 29 fractions to the supra- and infra-clavicular nodes PTV and a TD of 63.22Gy in 29 fractions to tumor boost PTV. Lungs, heart, esophagus, trachea, liver, thyroid and spinal cord were considered as organs at risk. VMAT feasibility and organ at risk sparing were evaluated by treatments planning of the 20 first enrolled patients. Tolerance and patients' outcome were prospectively monitored by acute/late toxicities records and by the analysis of overall survival (OS), locoregional recurrence-free survival (LRFS) and recurrence-free survival (RFS). Results: Breast, supraclavicular nodes and boost PTV coverage was adequate with at least 98% of PTV encompassed by more than 95% of the prescribed dose. Less than 90% of IMC PTV was encompassed by 95% of the prescribed dose. Mean lung dose was 12.3Gy (range: 7.7 - 18.7); mean heart dose was 10.7Gy (range: 6.2 - 22.3). Concerning acute toxicities, only 2 patients experienced grade 3 skin toxicity (3.7%) and only 1 patient developed grade 1 pneumonitis. After a median follow-up of 5.3 years, grade 2 fibrosis and/or shrinking was observed in 5 patients (10%), and grade 3 fibrosis in 1 patients (2%). The 5-year LRFS-rate, RFS-rate and OS were 98% [95% CI= 86.12-99.70%], 96% [95% CI= 84.63-98.96%] and 100%, respectively.
RESUMEN
Around 33% of patients treated by EBRT or brachytherapy will present a biochemical recurrence. SBRT is a new option for the treatment of patients with local-only recurrence. MRgRT seems to be interesting for the treatment of these recurrences. This article presents the one-year late tolerance and biochemical recurrence-free survival results of a prospective registry study. Patients with intraprostatic (or in the prostate bed) recurrence were treated with 5 to 9 fractions (median dose of 30 Gy in 5 fractions) with the MRIdian® system. PSA level and toxicities were evaluated before treatment and at three, six and 12 months after treatment. Thirty-seven patients with a median age of 74.5 years old were treated between 21 October 2019 and 7 December 2020. Acute tolerance was excellent with no grade >2 toxicities. Twelve months after treatment, we observed an increase of grade 1−2 dysuria (46% vs. 13% before treatment) and grade 1 polyuria (73% vs. 7%). The six, nine and 12-months biochemical-recurrence free survival were 97.3%, 86.5% and 65.0%. Fifteen patients (40%) presented a biochemical recurrence. Nine of these 15 patients (60%) had a persistent disease within the treated volume. In conclusion, MRgRT is safe and has promising survival results.
RESUMEN
Introduction: Stereotactic MR-guided Adaptive RadioTherapy (SMART) is a novel process to treat pancreatic tumors. We present an update of the data from our prospective registry of SMART for pancreatic tumors. Materials and methods: After the establishment of the SMART indication in a multidisciplinary board, we included all patients treated for pancreatic tumors. Primary endpoints were acute and late toxicities. Secondary endpoints were survival outcomes (local control, overall survival, distant metastasis free survival) and dosimetric advantages of adaptive process on targets volumes and OAR. Results: We included seventy consecutive patients in our cohort between October 2019 and April 2022. The prescribed dose was 50 Gy in 5 consecutive fractions. No severe acute SMART related toxicity was noted. Acute and late Grade ≤ 2 gastro intestinal were low. Daily adaptation significantly improved PTV and GTV coverage as well as OAR sparing. With a median follow-up of 10.8 months since SMART completion, the median OS, 6-months OS, and 1-year OS were 20.9 months, 86.7% (95% CI: (75−93%), and 68.6% (95% CI: (53−80%), respectively, from SMART completion. Local control at 6 months, 1 year, and 2 years were, respectively, 96.8 % (95% CI: 88−99%), 86.5 (95% CI: 68−95%), and 80.7% (95% CI: 59−92%). There was no grade > 2 late toxicities. Locally Advanced Pancreatic Cancers (LAPC) and Borderline Resectable Pancreatic Cancers (BRPC) patients (52 patients) had a median OS, 6-months OS, and 1-year OS from SMART completion of 15.2 months, 84.4% (95% CI: (70−92%)), and 60.5% (95% CI: (42−75%)), respectively. The median OS, 1-year OS, and 2-year OS from initiation of induction chemotherapy were 22.3 months, 91% (95% CI: (78−97%)), and 45.8% (95% CI: (27−63%)), respectively. Twenty patients underwent surgical resection (38.7 % of patients with initially LAPC) with negative margins (R0). Conclusion: To our knowledge, this is the largest series of SMART for pancreatic tumors. The treatment was well tolerated with only low-grade toxicities. Long-term OS and LC rates were achieved. SMART achieved high secondary resection rates in LAPC patients.
RESUMEN
Stereotactic MR-guided Radiotherapy (MRgRT) is an interesting treatment option for adrenal gland metastases (AGM). We reviewed data from 12 consecutive patients treated with MRgRT for an AGM in our center between 14 November 2019 and 17 August 2021. Endpoints were tolerance assessment, the impact of adaptive treatment on target volume coverage and organs at risk (OAR) sparing, local control (LC), and overall survival (OS). The majority of patients were oligometastatic (58.3%), with 6 right AGM, 5 left AGM and 1 left and right AGM. The prescribed dose was 35 to 50 Gy in 3 to 5 fractions. The median PTV V95% on the initial plan was 95.74%. The median V95% of the PTVoptimized (PTVopt) on the initial plan was 95.26%. Thirty-eight (69%) fractions were adapted. The PTV coverage was significantly improved for adapted plans compared to predicted plans (median PTV V95% increased from 89.85% to 91.17%, p = 0.0478). The plan adaptation also significantly reduced Dmax for the stomach and small intestine. The treatment was well tolerated with no grade > 2 toxicities. With a median follow-up of 15.5 months, the 1−year LC and OS rate were 100% and 91.7%. Six patients (50%) presented a metastatic progression, and one patient (8.3%) died of metastatic evolution during the follow-up. Adaptation of the treatment plan improved the overall dosimetric quality of MRI-guided radiotherapy. A longer follow-up is required to assess late toxicities and clinical results.
RESUMEN
Introduction: Stereotactic MR-guided adaptive radiotherapy (SMART) is an attractive modality of radiotherapy for pancreatic tumors. The objectives of this prospective registry study were to report the dosimetric benefits of daily adaptation of SMART and the first clinical results in pancreatic tumors. Materials and Methods: All patients treated in our center with SMART for a pancreatic tumor were included. Patients were planned for five daily-adapted fractions on consecutive days. Endpoints were acute toxicities, late toxicities, impact of adaptive treatment on target volume coverage and organs at risk (OAR) sparing, local control (LC) rate, distant metastasis-free survival (DMFS), and overall survival (OS). Results: Thirty consecutive patients were included between October 2019 and April 2021. The median dose prescription was 50 Gy. No patient presented grade > 2 acute toxicities. The most frequent grade 1-2 toxicities were asthenia (40%), abdominal pain (40%), and nausea (43%). Daily adaptation significantly improved planning target volume (PTV) and gross tumor volume (GTV) coverage and OAR sparing. With a median follow-up of 9.7 months, the median OS, 6-month OS, and 1-year OS were 14.1 months, 89% (95% CI: 70%-96%), and 75% (95% CI: 51%-88%), respectively, from SMART completion. LC at 6 months and 1 year was respectively 97% (95% CI: 79-99.5%) and 86% (95% CI: 61%-95%). There were no grade > 2 late toxicities. With a median follow-up of 10.64 months, locally advanced pancreatic cancer (LAPC) and borderline resectable pancreatic cancer (BRPC) patients (22 patients) had a median OS, 6-month OS, and 1-year OS from SMART completion of 14.1 months, 76% (95% CI: 51%-89%), and 70% (95% CI: 45%-85%), respectively. Nine patients underwent surgical resection (42.1% of patients with initial LAPC and 33.3% of patients with BRPC), with negative margins (R0). Resected patients had a significantly better OS as compared to unresected patients (p = 0.0219, hazard ratio (HR) = 5.78 (95% CI: 1.29-25.9)). Conclusion: SMART for pancreatic tumors is feasible without limiting toxicities. Daily adaptation demonstrated a benefit for tumor coverage and OAR sparing. The severity of observed acute and late toxicities was low. OS and LC rates were promising. SMART achieved a high secondary resection rate in LAPC patients. Surgery after SMART seemed to be feasible and might increase OS in these patients.
RESUMEN
PURPOSE: This prospective registry study evaluated the feasibility of stereotactic magnetic resonance imaging (MRI)-guided radiation therapy for the local treatment of isolated prostate cancer recurrence within the gland or prostate bed after primary radiation therapy. METHODS AND MATERIALS: Patients with isolated recurrence without any regional or distant extension after treatment by external radiation therapy of the prostate gland/bed or by prostate brachytherapy were included. A 173-second Fast Imaging with Steady state Precession (TrueFISP) sequence was used for MRI simulation, and the gross tumor volume was delineated using multimodal images. The initial treatment plan varied from 27.5 Gy in 5 fractions to 38.7 Gy in 9 fractions and was adapted at each session, if necessary. The primary endpoint was acute toxicities (according to the Common Terminology Criteria for Adverse Events v5.0 criteria). Secondary endpoints were the effects of the adaptive treatment on target volume coverage, late toxicities, and oncologic events. RESULTS: Twenty patients were included. After a minimum follow-up of 6 months, grade 2 dysuria (from grade 1 at baseline; n = 1), grade 2 polyuria (n = 1), grade 1 urinary incontinence (n = 1), grade 1 urinary pain (n = 2), and grade 1 diarrhea (n = 1) were reported.All initial treatment plans met the tumor coverage objectives, with a mean 95% planning target volume value of 95.7%. No plan exceeded the bladder and rectum dose constraints, but 8 exceeded the urethra dose constraints because of urethra proximity to the planning target volume. The initial plan was adapted in 7 patients (35%). The tumor coverage improved by 3.7% compared with the predicted plan (P = .0001) without increase in the dose to organs at risk. The biochemical control rate for the whole cohort was 75% (15/20 patients) including the 4 patients who received androgen-deprivation therapy. CONCLUSIONS: MRI-guided reirradiation for isolated recurrence within the prostate or in the prostate bed appears to be safe with excellent dosimetric results.