Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(15): 22049-22063, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752473

RESUMEN

A novel random laser, integrating a passive optical fiber with a phase separated aluminosilicate core-silica cladding as the feedback medium, is proposed and presented. The core exhibits greatly enhanced Rayleigh scattering, therefore requiring a significantly reduced length of scattering fiber (4 m) for lasing. With a Yb-doped fiber as the gain medium, the fiber laser operates at 1050 nm with low threshold power and possesses an output that can be amplified through conventional means. Furthermore, the laser was found to have a high degree of spatial coherence, spectral broadening with increasing input power, and temporal spectral variation. The facile setup and results herein pave the way for further study and applications based on low threshold random fiber lasers.

2.
Opt Lett ; 42(18): 3650-3653, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914924

RESUMEN

A model that predicts the material additivity of the thermal expansion coefficient in the binary silicate glasses most commonly used for present (GeO2-SiO2, P2O5-SiO2, B2O3-SiO2, and Al2O3-SiO2) and emerging (BaO-SiO2) optical fibers is proposed. This model is based on a derivation of the expression for the coefficient of thermal expansion in isotropic solids, and gives direct insight on the parameters that govern its additivity in silicate glasses. Furthermore, a consideration of the local structural environment of the glass system is necessary to fully describe its additivity behavior in the investigated systems. This Letter is important for better characterizing and understanding of the impact of temperature and internal stresses on the behavior of optical fibers.

3.
Opt Lett ; 40(21): 5030-3, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512511

RESUMEN

Results are presented toward realizing a true single-mode fiber whose Brillouin frequency shift is independent of temperature, while its dependence on strain is comparable to conventional high-silica-content single-mode fibers. Demonstrated here is a fiber with a negative thermal sensitivity dν/dT of -0.26 MHz/K and a strain sensitivity of +406 MHz/%. The suppression of the Brillouin thermal response is enabled by the large thermal expansion coefficient of the group I oxide-containing silica glass network.

4.
Appl Opt ; 53(25): 5660-71, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25321361

RESUMEN

Utilizing measurements on a lanthano-aluminosilicate core optical fiber, the specific effects of lanthana (La2O3) on the Brillouin characteristics of silica-based oxide glass optical fibers are described. Lanthana is an interesting species to investigate since it possesses a wide transparency window covering the common fiber laser and telecom system wavelengths. As might be expected, it is found that the properties of lanthana are very similar to those of ytterbia (Yb2O3), namely, low acoustic velocity, wide Brillouin spectral width, and a negative photoelastic constant, with the latter two properties affording significant reductions to the Brillouin gain coefficient. However, lanthana possesses thermo-acoustic and strain-acoustic coefficients (acoustic velocity versus temperature or strain, TAC and SAC, respectively) with signs that are opposed to those of ytterbia. The lanthano-aluminosilicate (SAL) fiber utilized in this study is Brillouin-athermal (no dependence of the Brillouin frequency on temperature), but not atensic (is dependent upon the strain), which is believed to be, to the best of our knowledge, the first demonstration of such a glass fiber utilizing a compositional engineering approach.

5.
Opt Express ; 20(13): 14494-507, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22714511

RESUMEN

Ultraviolet absorption measurements and laser excitation spectroscopy in the vicinity of 248 nm provide compelling evidence for linkages between the oxygen deficiency center (ODC) and rare earth concentrations in Yb and Er-doped glass optical fibers. Investigations of YAG-derived and solution-doped glass fibers are described. For both Yb and Er-doped fibers, the dependence of Type II ODC absorption on the rare earth number density is approximately linear, but the magnitude of the effect is greater for Yb-doped fibers. Furthermore, laser excitation spectra demonstrate unambiguously the existence of an energy transfer mechanism coupling an ODC with Yb(3+). Photopumping glass fibers with a Ti:sapphire laser/optical parametric amplifier system, tunable over the 225-265 nm region, or with a KrF laser at 248.4 nm show: 1) emission features in the 200-1100 nm interval attributable only to the ODC (Type II) defect or Yb(3+), and 2) the excitation spectra for ODC (II) emission at ~280 nm and Yb(3+) fluorescence (λ ~1.03 µm) to be, within experimental uncertainty, identical. The latter demonstrates that, when irradiating Yb-doped silica fibers between ~240 and 255 nm, the ODC (II) defect is at least the primary precursor to Yb(3+) emission. Consistent with previous reports in the literature, the data show the ODC (II) absorption spectrum to have a peak wavelength and breadth of ~246 nm and ~19 nm (FWHM). Experiments also reveal that, in the absence of Yb, incorporating either Al(2)O(3) or Y(2)O(3) into glass fibers has a negligible impact on the ODC concentration. Not only do the data reported here demonstrate the relationship between the ODC (II) number density and the Yb doping concentration, but they also suggest that the appearance of ODC defects in the fiber is associated with the introduction of Yb and the process by which the fiber is formed.


Asunto(s)
Vidrio/química , Rayos Láser , Metales de Tierras Raras/química , Fibras Ópticas , Oxígeno/química , Dióxido de Silicio/química , Espectrofotometría Ultravioleta/métodos , Absorción , Ensayo de Materiales , Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA