Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 597(7877): 571-576, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497422

RESUMEN

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Asunto(s)
Analgesia , Receptor de Adenosina A1/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hiperalgesia/tratamiento farmacológico , Lípidos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/química , Transducción de Señal/efectos de los fármacos
2.
Nature ; 558(7711): 559-563, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925945

RESUMEN

The class A adenosine A1 receptor (A1R) is a G-protein-coupled receptor that preferentially couples to inhibitory Gi/o heterotrimeric G proteins, has been implicated in numerous diseases, yet remains poorly targeted. Here we report the 3.6 Å structure of the human A1R in complex with adenosine and heterotrimeric Gi2 protein determined by Volta phase plate cryo-electron microscopy. Compared to inactive A1R, there is contraction at the extracellular surface in the orthosteric binding site mediated via movement of transmembrane domains 1 and 2. At the intracellular surface, the G protein engages the A1R primarily via amino acids in the C terminus of the Gαi α5-helix, concomitant with a 10.5 Å outward movement of the A1R transmembrane domain 6. Comparison with the agonist-bound ß2 adrenergic receptor-Gs-protein complex reveals distinct orientations for each G-protein subtype upon engagement with its receptor. This active A1R structure provides molecular insights into receptor and G-protein selectivity.


Asunto(s)
Adenosina/química , Adenosina/metabolismo , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Receptor de Adenosina A1/química , Receptor de Adenosina A1/ultraestructura , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Modelos Moleculares , Receptor de Adenosina A1/metabolismo , Rotación , Especificidad por Sustrato
3.
Nat Chem Biol ; 10(9): 745-52, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25108820

RESUMEN

SB269652 is to our knowledge the first drug-like allosteric modulator of the dopamine D2 receptor (D2R), but it contains structural features associated with orthosteric D2R antagonists. Using a functional complementation system to control the identity of individual protomers within a dimeric D2R complex, we converted the pharmacology of the interaction between SB269652 and dopamine from allosteric to competitive by impairing ligand binding to one of the protomers, indicating that the allostery requires D2R dimers. Additional experiments identified a 'bitopic' pose for SB269652 extending from the orthosteric site into a secondary pocket at the extracellular end of the transmembrane (TM) domain, involving TM2 and TM7. Engagement of this secondary pocket was a requirement for the allosteric pharmacology of SB269652. This suggests a new mechanism whereby a bitopic ligand binds in an extended pose on one G protein-coupled receptor protomer to allosterically modulate the binding of a ligand to the orthosteric site of a second protomer.


Asunto(s)
Dopaminérgicos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Conformación Proteica , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Receptores de Dopamina D2/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Transducción de Señal
4.
Sci Adv ; 10(37): eadp7040, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39259792

RESUMEN

The activation of a G protein-coupled receptor (GPCR) leads to the formation of a ternary complex between agonist, receptor, and G protein that is characterized by high-affinity binding. Allosteric modulators bind to a distinct binding site from the orthosteric agonist and can modulate both the affinity and the efficacy of orthosteric agonists. The influence allosteric modulators have on the high-affinity active state of the GPCR-G protein ternary complex is unknown due to limitations on attempting to characterize this interaction in recombinant whole cell or membrane-based assays. Here, we use the purified M2 muscarinic acetylcholine receptor reconstituted into nanodiscs to show that, once the agonist-bound high-affinity state is promoted by the G protein, positive allosteric modulators stabilize the ternary complex that, in the presence of nucleotides, leads to an enhanced initial rate of signaling. Our results enhance our understanding of how allosteric modulators influence orthosteric ligand signaling and will aid the design of allosteric therapeutics.


Asunto(s)
Unión Proteica , Receptor Muscarínico M2 , Receptores Acoplados a Proteínas G , Regulación Alostérica , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/química , Ligandos , Sitios de Unión , Transducción de Señal , Proteínas de Unión al GTP/metabolismo , Sitio Alostérico
5.
ACS Chem Biol ; 14(8): 1780-1792, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31339684

RESUMEN

Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments, and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2, and 7 determines the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism for fine-tuning the intrinsic efficacy of D2R agonists.


Asunto(s)
Antipsicóticos/metabolismo , Aripiprazol/metabolismo , Agonistas de Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Aripiprazol/química , Sitios de Unión , Dopamina/química , Dopamina/metabolismo , Agonistas de Dopamina/química , Indoles/química , Indoles/metabolismo , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética
6.
Curr Opin Struct Biol ; 51: 28-34, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29547818

RESUMEN

G protein-coupled receptors (GPCRs) are the largest superfamily of cell surface receptor proteins and are important drug targets for many human diseases. In the last decade, remarkable progress has been made in the determination of atomic structures of GPCRs with over 200 structures from 53 unique receptors having been solved. Technological advances in protein engineering and X-ray crystallography have driven much of the progress to date. However, recent advances in cryo-electron microscopy have facilitated the structural determination of three new structures of active-state GPCRs in complex with heterotrimeric G protein. These advances have led to significant breakthroughs in our understanding of GPCR biology including not only how signal transducers such as G proteins or arrestins interact with receptors, but also pave the way for future structure-based drug design.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Ingeniería de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
7.
ACS Pharmacol Transl Sci ; 1(2): 73-83, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32219204

RESUMEN

G protein-coupled receptors (GPCRs) are a key drug target class. They account for over one-third of current pharmaceuticals, and both drugs that inhibit and promote receptor function are important therapeutically; in some cases, the same GPCR can be targeted with agonists and inhibitors, depending upon disease context. There have been major breakthroughs in understanding GPCR structure and drug binding through advances in X-ray crystallography, and membrane protein stabilization. Nonetheless, these structures have predominately been of inactive receptors bound to inhibitors. Efforts to capture structures of fully active GPCRs, in particular those in complex with the canonical, physiological transducer G protein, have been limited via this approach. Very recently, advances in cryo-electron microscopy have provided access to agonist:GPCR:G protein complex structures. These promise to revolutionize our understanding of GPCR:G protein engagement and provide insight into mechanisms of efficacy and coupling selectivity and how these might be controlled by biased agonists. Here we review what we have currently learned from the new GPCR:Gs and GPCR:Gi/o complex structures.

8.
Sci Rep ; 8(1): 1208, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352161

RESUMEN

Sodium ions (Na+) allosterically modulate the binding of orthosteric agonists and antagonists to many class A G protein-coupled receptors, including the dopamine D2 receptor (D2R). Experimental and computational evidences have revealed that this effect is mediated by the binding of Na+ to a conserved site located beneath the orthosteric binding site (OBS). SB269652 acts as a negative allosteric modulator (NAM) of the D2R that adopts an extended bitopic pose, in which the tetrahydroisoquinoline moiety interacts with the OBS and the indole-2-carboxamide moiety occupies a secondary binding pocket (SBP). In this study, we find that the presence of a Na+ within the conserved Na+-binding pocket is required for the action of SB269652. Using fragments of SB269652 and novel full-length analogues, we show that Na+ is required for the high affinity binding of the tetrahydroisoquinoline moiety within the OBS, and that the interaction of the indole-2-carboxamide moiety with the SBP determines the degree of Na+-sensitivity. Thus, we extend our understanding of the mode of action of this novel class of NAM by showing it acts synergistically with Na+ to modulate the binding of orthosteric ligands at the D2R, providing opportunities for fine-tuning of modulatory effects in future allosteric drug design efforts.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/farmacología , Iones/metabolismo , Receptores de Dopamina D2/metabolismo , Sodio/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Células CHO , Cricetulus , Dopamina/química , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2/química , Humanos , Indoles/química , Indoles/farmacología , Iones/química , Isoquinolinas/química , Isoquinolinas/farmacología , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Receptores de Dopamina D2/química , Sodio/química
9.
Biochem Pharmacol ; 148: 315-328, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29325769

RESUMEN

SB269652 is a negative allosteric modulator of the dopamine D2 receptor (D2R) yet possesses structural similarity to ligands with a competitive mode of interaction. In this study, we aimed to understand the ligand-receptor interactions that confer its allosteric action. We combined site-directed mutagenesis with molecular dynamics simulations using both SB269652 and derivatives from our previous structure activity studies. We identify residues within the conserved orthosteric binding site (OBS) and a secondary binding pocket (SBP) that determine affinity and cooperativity. Our results indicate that interaction with the SBP is a requirement for allosteric pharmacology, but that both competitive and allosteric derivatives of SB269652 can display sensitivity to the mutation of a glutamate residue (E952.65) within the SBP. Our findings provide the molecular basis for the differences in affinity between SB269652 derivatives, and reveal how changes to interactions made by the primary pharmacophore of SB269652 in the orthosteric pocket can confer changes in the interactions made by the secondary pharmacophore in the SBP. Our insights provide a structure-activity framework towards rational optimization of bitopic ligands for D2R with tailored competitive versus allosteric properties.


Asunto(s)
Antagonistas de los Receptores de Dopamina D2/farmacología , Indoles/farmacología , Isoquinolinas/farmacología , Receptores de Dopamina D2/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetulus , Antagonistas de los Receptores de Dopamina D2/química , Indoles/química , Isoquinolinas/química , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica
10.
J Med Chem ; 58(17): 6819-43, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26258690

RESUMEN

Recently, we have demonstrated that N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652) (1) adopts a bitopic pose at one protomer of a dopamine D2 receptor (D2R) dimer to negatively modulate the binding of dopamine at the other protomer. The 1H-indole-2-carboxamide moiety of 1 extends into a secondary pocket between the extracellular ends of TM2 and TM7 within the D2R protomer. To target this putative allosteric site, we generated and characterized fragments that include and extend from the 1H-indole-2-carboxamide moiety of 1. N-Isopropyl-1H-indole-2-carboxamide (3) displayed allosteric pharmacology and sensitivity to mutations of the same residues at the top of TM2 as was observed for 1. Using 3 as an "allosteric lead", we designed and synthesized an extensive fragment library to generate novel SAR and identify N-butyl-1H-indole-2-carboxamide (11d), which displayed both increased negative cooperativity and affinity for the D2R. These data illustrate that fragmentation of extended compounds can expose fragments with purely allosteric pharmacology.


Asunto(s)
Amidas/química , Dopaminérgicos/química , Indoles/química , Receptores de Dopamina D2/metabolismo , Regulación Alostérica , Amidas/síntesis química , Amidas/farmacología , Animales , Arrestinas/metabolismo , Células CHO , Cuerpo Estriado/metabolismo , Cricetulus , Dopaminérgicos/síntesis química , Dopaminérgicos/farmacología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Indoles/síntesis química , Indoles/farmacología , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Fosforilación , Ensayo de Unión Radioligante , Ratas , Receptores de Dopamina D2/genética , Estereoisomerismo , Relación Estructura-Actividad , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA