Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Reprod ; 37(11): 2700-2708, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36149256

RESUMEN

STUDY QUESTION: Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER: Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY: Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION: We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION: Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS: The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S): M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Estudios Prospectivos , Pruebas Genéticas/métodos , Blastocisto , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850888

RESUMEN

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Asunto(s)
Blastómeros/metabolismo , ADN Mitocondrial/genética , Mutación de Línea Germinal , Oocitos/metabolismo , Adulto , ADN Mitocondrial/metabolismo , Femenino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilación Oxidativa
3.
J Med Genet ; 54(10): 693-697, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28668821

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. METHODS: For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. RESULTS: Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. CONCLUSION: Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations.


Asunto(s)
Blastómeros , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Biopsia , Blastocisto , Errores Diagnósticos , Femenino , Heterocigoto , Humanos , Mutación , Embarazo
4.
Hum Reprod ; 32(3): 698-703, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122886

RESUMEN

We report on the first PGD performed for the m.14487 T>C mitochondrial DNA (mtDNA) mutation in the MT-ND6 gene, associated with Leigh syndrome. The female carrier gave birth to a healthy baby boy at age 42. This case adds to the successes of PGD for mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/diagnóstico , Mutación , Femenino , Humanos , Recién Nacido , Enfermedad de Leigh/genética , Masculino , Mitocondrias/genética , Linaje , Embarazo , Diagnóstico Preimplantación , Resultado del Tratamiento
5.
Genet Med ; 16(11): 838-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24810687

RESUMEN

PURPOSE: Our aim was to compare the accuracy of family- or disease-specific targeted haplotyping and direct mutation-detection strategies with the accuracy of genome-wide mapping of the parental origin of each chromosome, or karyomapping, by single-nucleotide polymorphism genotyping of the parents, a close relative of known disease status, and the embryo cell(s) used for preimplantation genetic diagnosis of single-gene defects in a single cell or small numbers of cells biopsied from human embryos following in vitro fertilization. METHODS: Genomic DNA and whole-genome amplification products from embryo samples, which were previously diagnosed by targeted haplotyping, were genotyped for single-nucleotide polymorphisms genome-wide detection and retrospectively analyzed blind by karyomapping. RESULTS: Single-nucleotide polymorphism genotyping and karyomapping were successful in 213/218 (97.7%) samples from 44 preimplantation genetic diagnosis cycles for 25 single-gene defects with various modes of inheritance distributed widely across the genome. Karyomapping was concordant with targeted haplotyping in 208 (97.7%) samples, and the five nonconcordant samples were all in consanguineous regions with limited or inconsistent haplotyping results. CONCLUSION: Genome-wide karyomapping is highly accurate and facilitates analysis of the inheritance of almost any single-gene defect, or any combination of loci, at the single-cell level, greatly expanding the range of conditions for which preimplantation genetic diagnosis can be offered clinically without the need for customized test development.


Asunto(s)
Mapeo Cromosómico/métodos , Técnicas de Genotipaje/métodos , Cariotipificación/métodos , Diagnóstico Preimplantación/métodos , Blastocisto , Femenino , Genoma Humano , Humanos , Técnicas In Vitro , Masculino , Padres , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Estudios Retrospectivos
6.
J Med Genet ; 50(2): 125-32, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23339111

RESUMEN

BACKGROUND: Mitochondrial or oxidative phosphorylation diseases are relatively frequent, multisystem disorders; in about 15% of cases they are caused by maternally inherited mitochondrial DNA (mtDNA) mutations. Because of the possible severity of the phenotype, the lack of effective treatment, and the high recurrence risk for offspring of carrier females, couples wish to prevent the transmission of these mtDNA disorders to their offspring. Prenatal diagnosis is problematic for several reasons, and concern the often poor correlation between mutation percentages and disease severity and the uncertainties about the representativeness of a fetal sample. A new option for preventing transmission of mtDNA disorders is preimplantation genetic diagnosis (PGD), which circumvents these problems by transferring an embryo below the threshold of clinical expression. METHODS: We present the data on nine PGD cycles in four female carriers of mitochondrial diseases: three mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (m.3243A>G), and one Leigh (m.8993T>G). Our threshold for transfer after PGD is 15% for the m.3243A>G mutation and 30% for the m.8993T>G mutation. RESULTS: All four female carriers produced embryos eligible for transfer. The m.8993T>G mutation in oocytes/embryos showed more skewing than the m.3243A>G. In about 80% of the embryos the mutation load in the individual blastomeres was fairly constant (interblastomere differences <10%). However, in around 11% (in embryos with the m.3243A>G mutation only), the mutation load differed substantially (>15%) between blastomeres of a single embryo, mostly as a result of one outlier. The m.8993T>G carrier became pregnant and gave birth to a healthy son. CONCLUSIONS: PGD provides carriers of mtDNA mutations the opportunity to conceive healthy offspring.


Asunto(s)
Análisis Mutacional de ADN/métodos , ADN Mitocondrial/análisis , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Diagnóstico Preimplantación/métodos , Adulto , Blastómeros/fisiología , ADN Mitocondrial/química , ADN Mitocondrial/genética , Embrión de Mamíferos , Femenino , Humanos , Masculino , Mutación , Oocitos/fisiología , Linaje , Embarazo , Cigoto/fisiología
7.
Eur J Hum Genet ; 20(9): 938-44, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22378284

RESUMEN

Preimplantation genetic diagnosis (PGD) for chromosomal rearrangements (CR) is mainly based on fluorescence in situ hybridisation (FISH). Application of this technique is limited by the number of available fluorochromes, the extensive preclinical work-up and technical and interpretative artefacts. We aimed to develop a universal, off-the-shelf protocol for PGD by combining single-nucleotide polymorphism (SNP) array-derived copy number (CN) determination and genotyping for detection of unbalanced translocations in cleavage-stage embryos. A total of 36 cleavage-stage embryos that were diagnosed as unbalanced by initial PGD FISH analysis were dissociated (n=146) and amplified by multiple displacement amplification (MDA). SNP CNs and genotypes were determined using SNP array. Epstein-Barr Virus-transformed cell lines with known CR were used for optimising the genomic smoothing (GS) length setting to increase signal to noise ratio. SNP CN analysis showed 23 embryos (64%) that were unbalanced in all blastomeres for the chromosomes involved in the translocation, 5 embryos (14%) that were normal or balanced in all blastomeres and 8 embryos (22%) that were mosaic. SNP genotyping, based on analysis of informative SNP loci with opposing homozygous parental genotypes, confirmed partial monosomies associated with inheritance of unbalanced translocation in surplus embryos. We have developed a universal MDA-SNP array technique for chromosome CN analysis in single blastomeres. SNP genotyping could confirm partial monosomies. This combination of techniques showed improved diagnostic specificity compared with FISH and may provide more reliable PGD analysis associated with higher embryo transfer rate.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Diagnóstico Preimplantación/métodos , Blastómeros , Línea Celular Transformada , Implantación del Embrión/genética , Transferencia de Embrión , Embrión de Mamíferos , Femenino , Dosificación de Gen , Genotipo , Técnicas de Genotipaje , Humanos , Hibridación Fluorescente in Situ , Embarazo , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA