Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Anat Embryol Cell Biol ; 219: 263-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27207370

RESUMEN

Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Aprendizaje Automático , Imagen Molecular/métodos , Biología Computacional/métodos , Interpretación Estadística de Datos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/instrumentación , Reconocimiento de Normas Patrones Automatizadas/estadística & datos numéricos
2.
Sci Rep ; 12(1): 5444, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361786

RESUMEN

Rigorous comparisons of human and machine learning algorithm performance on the same task help to support accurate claims about algorithm success rates and advances understanding of their performance relative to that of human performers. In turn, these comparisons are critical for supporting advances in artificial intelligence. However, the machine learning community has lacked a standardized, consensus framework for performing the evaluations of human performance necessary for comparison. We demonstrate common pitfalls in a designing the human performance evaluation and propose a framework for the evaluation of human performance, illustrating guiding principles for a successful comparison. These principles are first, to design the human evaluation with an understanding of the differences between human and algorithm cognition; second, to match trials between human participants and the algorithm evaluation, and third, to employ best practices for psychology research studies, such as the collection and analysis of supplementary and subjective data and adhering to ethical review protocols. We demonstrate our framework's utility for designing a study to evaluate human performance on a one-shot learning task. Adoption of this common framework may provide a standard approach to evaluate algorithm performance and aid in the reproducibility of comparisons between human and machine learning algorithm performance.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Humanos , Reproducibilidad de los Resultados
3.
Front Psychol ; 12: 733021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970183

RESUMEN

Aerial images are frequently used in geospatial analysis to inform responses to crises and disasters but can pose unique challenges for visual search when they contain low resolution, degraded information about color, and small object sizes. Aerial image analysis is often performed by humans, but machine learning approaches are being developed to complement manual analysis. To date, however, relatively little work has explored how humans perform visual search on these tasks, and understanding this could ultimately help enable human-machine teaming. We designed a set of studies to understand what features of an aerial image make visual search difficult for humans and what strategies humans use when performing these tasks. Across two experiments, we tested human performance on a counting task with a series of aerial images and examined the influence of features such as target size, location, color, clarity, and number of targets on accuracy and search strategies. Both experiments presented trials consisting of an aerial satellite image; participants were asked to find all instances of a search template in the image. Target size was consistently a significant predictor of performance, influencing not only accuracy of selections but the order in which participants selected target instances in the trial. Experiment 2 demonstrated that the clarity of the target instance and the match between the color of the search template and the color of the target instance also predicted accuracy. Furthermore, color also predicted the order of selecting instances in the trial. These experiments establish not only a benchmark of typical human performance on visual search of aerial images but also identify several features that can influence the task difficulty level for humans. These results have implications for understanding human visual search on real-world tasks and when humans may benefit from automated approaches.

4.
Gigascience ; 9(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33347572

RESUMEN

BACKGROUND: Emerging neuroimaging datasets (collected with imaging techniques such as electron microscopy, optical microscopy, or X-ray microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. RESULTS: We developed an ecosystem of neuroimaging data analysis pipelines that use open-source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, which connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines. CONCLUSIONS: Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets but may be applied to similar problems in other domains.


Asunto(s)
Ecosistema , Programas Informáticos , Algoritmos , Neuroimagen , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA