Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1356-1366.e10, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30799038

RESUMEN

Operons are a hallmark of bacterial genomes, where they allow concerted expression of functionally related genes as single polycistronic transcripts. They are rare in eukaryotes, where each gene usually drives expression of its own independent messenger RNAs. Here, we report the horizontal operon transfer of a siderophore biosynthesis pathway from relatives of Escherichia coli into a group of budding yeast taxa. We further show that the co-linearly arranged secondary metabolism genes are expressed, exhibit eukaryotic transcriptional features, and enable the sequestration and uptake of iron. After transfer, several genetic changes occurred during subsequent evolution, including the gain of new transcription start sites that were sometimes within protein-coding sequences, acquisition of polyadenylation sites, structural rearrangements, and integration of eukaryotic genes into the cluster. We conclude that the genes were likely acquired as a unit, modified for eukaryotic gene expression, and maintained by selection to adapt to the highly competitive, iron-limited environment.


Asunto(s)
Eucariontes/genética , Transferencia de Gen Horizontal/genética , Operón/genética , Bacterias/genética , Escherichia coli/genética , Células Eucariotas , Evolución Molecular , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Saccharomycetales/genética , Sideróforos/genética
2.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415838

RESUMEN

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética
3.
Nature ; 626(8000): 799-807, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326615

RESUMEN

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Células Endoteliales , Estudio de Asociación del Genoma Completo , Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Predisposición Genética a la Enfermedad/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Polimorfismo de Nucleótido Simple , Epigenómica , Transducción de Señal/genética , Herencia Multifactorial
4.
Nature ; 607(7917): 176-184, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594906

RESUMEN

Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters1. A proposed model for this specificity is that promoters have sequence-encoded preferences for certain enhancers, for example, mediated by interacting sets of transcription factors or cofactors2. This 'biochemical compatibility' model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila3-9. However, the degree to which human enhancers and promoters are intrinsically compatible has not yet been systematically measured, and how their activities combine to control RNA expression remains unclear. Here we design a high-throughput reporter assay called enhancer × promoter self-transcribing active regulatory region sequencing (ExP STARR-seq) and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify simple rules for enhancer-promoter compatibility, whereby most enhancers activate all promoters by similar amounts, and intrinsic enhancer and promoter activities multiplicatively combine to determine RNA output (R2 = 0.82). In addition, two classes of enhancers and promoters show subtle preferential effects. Promoters of housekeeping genes contain built-in activating motifs for factors such as GABPA and YY1, which decrease the responsiveness of promoters to distal enhancers. Promoters of variably expressed genes lack these motifs and show stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Elementos de Facilitación Genéticos/genética , Humanos , Regiones Promotoras Genéticas/genética , ARN/biosíntesis , ARN/genética , Factores de Transcripción/metabolismo
5.
Nature ; 593(7858): 238-243, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828297

RESUMEN

Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complex traits, each of which could reveal insights into the mechanisms of disease1. Many of the underlying causal variants may affect enhancers2,3, but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types4. Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577 genes that appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Línea Celular , Cromosomas Humanos Par 10/genética , Ciclofilinas/genética , Células Dendríticas , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Mitocondrias/metabolismo , Especificidad de Órganos/genética , Fenotipo
6.
Nucleic Acids Res ; 51(18): 9920-9937, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665033

RESUMEN

Polymerase theta (Polθ) acts in DNA replication and repair, and its inhibition is synthetic lethal in BRCA1 and BRCA2-deficient tumor cells. Novobiocin (NVB) is a first-in-class inhibitor of the Polθ ATPase activity, and it is currently being tested in clinical trials as an anti-cancer drug. Here, we investigated the molecular mechanism of NVB-mediated Polθ inhibition. Using hydrogen deuterium exchange-mass spectrometry (HX-MS), biophysical, biochemical, computational and cellular assays, we found NVB is a non-competitive inhibitor of ATP hydrolysis. NVB sugar group deletion resulted in decreased potency and reduced HX-MS interactions, supporting a specific NVB binding orientation. Collective results revealed that NVB binds to an allosteric site to block DNA binding, both in vitro and in cells. Comparisons of The Cancer Genome Atlas (TCGA) tumors and matched controls implied that POLQ upregulation in tumors stems from its role in replication stress responses to increased cell proliferation: this can now be tested in fifteen tumor types by NVB blocking ssDNA-stimulation of ATPase activity, required for Polθ function at replication forks and DNA damage sites. Structural and functional insights provided in this study suggest a path for developing NVB derivatives with improved potency for Polθ inhibition by targeting ssDNA binding with entropically constrained small molecules.


Asunto(s)
Adenosina Trifosfatasas , ADN Polimerasa theta , Neoplasias , Novobiocina , Humanos , Adenosina Trifosfatasas/metabolismo , Replicación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Novobiocina/farmacología
7.
Proc Natl Acad Sci U S A ; 119(22): e2123536119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605122

RESUMEN

The ongoing and projected impacts from human-induced climate change highlight the need for mitigation approaches to limit warming in both the near term (<2050) and the long term (>2050). We clarify the role of non-CO2 greenhouse gases and aerosols in the context of near-term and long-term climate mitigation, as well as the net effect of decarbonization strategies targeting fossil fuel (FF) phaseout by 2050. Relying on Intergovernmental Panel on Climate Change radiative forcing, we show that the net historical (2019 to 1750) radiative forcing effect of CO2 and non-CO2 climate forcers emitted by FF sources plus the CO2 emitted by land-use changes is comparable to the net from non-CO2 climate forcers emitted by non-FF sources. We find that mitigation measures that target only decarbonization are essential for strong long-term cooling but can result in weak near-term warming (due to unmasking the cooling effect of coemitted aerosols) and lead to temperatures exceeding 2 °C before 2050. In contrast, pairing decarbonization with additional mitigation measures targeting short-lived climate pollutants and N2O, slows the rate of warming a decade or two earlier than decarbonization alone and avoids the 2 °C threshold altogether. These non-CO2 targeted measures when combined with decarbonization can provide net cooling by 2030 and reduce the rate of warming from 2030 to 2050 by about 50%, roughly half of which comes from methane, significantly larger than decarbonization alone over this time frame. Our analysis demonstrates the need for a comprehensive CO2 and targeted non-CO2 mitigation approach to address both the near-term and long-term impacts of climate disruption.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Clima , Combustibles Fósiles , Calentamiento Global/prevención & control
8.
Mol Microbiol ; 119(4): 515-533, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36786209

RESUMEN

Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.


Asunto(s)
Bacteriófagos , ARN Pequeño no Traducido , Vibrio cholerae , Bacteriófagos/metabolismo , Vibrio cholerae/genética , Virus Satélites/genética , Expresión Génica , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
9.
Glob Chang Biol ; 30(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273552

RESUMEN

We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered-our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist.


Asunto(s)
Ecosistema , Extinción Biológica , Animales , Anfibios , Humedales , Mamíferos , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Biodiversidad
10.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686608

RESUMEN

The hydroxyl radical (OH) sets the oxidative capacity of the atmosphere and, thus, profoundly affects the removal rate of pollutants and reactive greenhouse gases. While observationally derived constraints exist for global annual mean present-day OH abundances and interannual variability, OH estimates for past and future periods rely primarily on global atmospheric chemistry models. These models disagree ± 30% in mean OH and in its changes from the preindustrial to late 21st century, even when forced with identical anthropogenic emissions. A simple steady-state relationship that accounts for ozone photolysis frequencies, water vapor, and the ratio of reactive nitrogen to carbon emissions explains temporal variability within most models, but not intermodel differences. Here, we show that departure from the expected relationship reflects the treatment of reactive oxidized nitrogen species (NO y ) and the fraction of emitted carbon that reacts within each chemical mechanism, which remain poorly known due to a lack of observational data. Our findings imply a need for additional observational constraints on NO y partitioning and lifetime, especially in the remote free troposphere, as well as the fate of carbon-containing reaction intermediates to test models, thereby reducing uncertainties in projections of OH and, hence, lifetimes of pollutants and greenhouse gases.

11.
J Cancer Educ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103704

RESUMEN

Visiting electives provide an opportunity for medical students to engage with radiation oncology (RO) programs, likely influencing residency match outcomes. However, some student's out-of-pocket costs may be prohibitive, and in attempts to offset the financial burden of visiting electives, particularly for students underrepresented in medicine (URiM), some institutions offer scholarships. Here, we characterized the current domestic landscape of funded RO electives. Visiting electives were identified through the FREIDA and VSLO databases in April 2024. Funded elective availability and departmental characteristics were identified via internet search by two independent reviewers. Fisher's exact test was used to determine whether there was a difference in the distribution of scholarships across the US due to the small sample size. Ninety-two visiting electives were identified, with 40 programs offering URiM elective scholarships (43.5%). Twelve (30%) were funded specifically by RO departments, and 28 (70%) were part of broader institutional URiM scholarship initiatives. The median stipend provided was $2000 (IQR $500), range $1000-$5000. Analysis of scholarships by US census division and metro area revealed unequal distribution. Electives in New England, Mountain, and East North Central divisions had higher funding proportion compared to electives in the East South Central, West South Central, and Middle Atlantic divisions. Only 1/9 electives in New York City were funded compared with 4/6 in Los Angeles. Departments with funded electives had more faculty physicians and medical residents. In our review of the 2024 landscape, over 40% of RO electives offer financial support. However, we identified geographical disparities in the distribution of scholarships, highlighting the need for interventions to address unequal access to a wide array of training programs. Our study represents a valuable resource for students interested in RO and highlights the continued need to positively contribute to increasing diversity in the field. Future work exploring the impact of funded electives is needed.

12.
Curr Opin Infect Dis ; 36(5): 420-425, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493238

RESUMEN

PURPOSE OF REVIEW: Plasma cell-free metagenomic next-generation sequencing (cf-mNGS) is increasingly employed for the diagnosis of infection, but a consensus for optimal use has not been established. This minireview focuses on the commercially available Karius Test and is aimed at local leaders seeking to understand the complexities of cf-mNGS to make informed test utilization policies and better interpret results. RECENT FINDINGS: Recent retrospective studies have reported how the Karius Test was applied at their institutions and identified areas of potential patient benefit. In addition, substantive studies have reported how this test performs in specific indications, particularly invasive fungal disease, endovascular infection and lower respiratory infection. SUMMARY: Successfully integrating plasma cf-mNGS requires careful assessment of performance in the specific applications and patient populations in which it is used. Individual institutions must independently evaluate implementation strategies and determine where diagnostic yields outweigh the potential pitfalls.


Asunto(s)
Infecciones Fúngicas Invasoras , Infecciones del Sistema Respiratorio , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Sensibilidad y Especificidad , Estudios Retrospectivos
13.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36931895

RESUMEN

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large class of secondary metabolites that have garnered scientific attention due to their complex scaffolds with potential roles in medicine, agriculture, and chemical ecology. RiPPs derive from the cleavage of ribosomally synthesized proteins and additional modifications, catalyzed by various enzymes to alter the peptide backbone or side chains. Of these enzymes, cytochromes P450 (P450s) are a superfamily of heme-thiolate proteins involved in many metabolic pathways, including RiPP biosyntheses. In this review, we focus our discussion on P450 involved in RiPP pathways and the unique chemical transformations they mediate. Previous studies have revealed a wealth of P450s distributed across all domains of life. While the number of characterized P450s involved in RiPP biosyntheses is relatively small, they catalyze various enzymatic reactions such as C-C or C-N bond formation. Formation of some RiPPs is catalyzed by more than one P450, enabling structural diversity. With the continuous improvement of the bioinformatic tools for RiPP prediction and advancement in synthetic biology techniques, it is expected that further cytochrome P450-mediated RiPP biosynthetic pathways will be discovered. SUMMARY: The presence of genes encoding P450s in gene clusters for ribosomally synthesized and post-translationally modified peptides expand structural and functional diversity of these secondary metabolites, and here, we review the current state of this knowledge.


Asunto(s)
Productos Biológicos , Ribosomas , Ribosomas/genética , Ribosomas/metabolismo , Procesamiento Proteico-Postraduccional , Bacterias/genética , Bacterias/metabolismo , Péptidos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Productos Biológicos/química
14.
Proc Natl Acad Sci U S A ; 117(52): 33404-33413, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376219

RESUMEN

Single-cell quantification of RNAs is important for understanding cellular heterogeneity and gene regulation, yet current approaches suffer from low sensitivity for individual transcripts, limiting their utility for many applications. Here we present Hybridization of Probes to RNA for sequencing (HyPR-seq), a method to sensitively quantify the expression of hundreds of chosen genes in single cells. HyPR-seq involves hybridizing DNA probes to RNA, distributing cells into nanoliter droplets, amplifying the probes with PCR, and sequencing the amplicons to quantify the expression of chosen genes. HyPR-seq achieves high sensitivity for individual transcripts, detects nonpolyadenylated and low-abundance transcripts, and can profile more than 100,000 single cells. We demonstrate how HyPR-seq can profile the effects of CRISPR perturbations in pooled screens, detect time-resolved changes in gene expression via measurements of gene introns, and detect rare transcripts and quantify cell-type frequencies in tissue using low-abundance marker genes. By directing sequencing power to genes of interest and sensitively quantifying individual transcripts, HyPR-seq reduces costs by up to 100-fold compared to whole-transcriptome single-cell RNA-sequencing, making HyPR-seq a powerful method for targeted RNA profiling in single cells.


Asunto(s)
Sondas de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación de Ácido Nucleico , ARN/metabolismo , Análisis de la Célula Individual , Animales , Sistemas CRISPR-Cas/genética , Expresión Génica , Humanos , Intrones/genética , Células K562 , Riñón/citología , Ratones , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células THP-1 , Factores de Tiempo
15.
Empir Softw Eng ; 27(7): 168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159896

RESUMEN

The paper introduces a fundamental technological problem with collecting high-speed eye tracking data while studying software engineering tasks in an integrated development environment. The use of eye trackers is quickly becoming an important means to study software developers and how they comprehend source code and locate bugs. High quality eye trackers can record upwards of 120 to 300 gaze points per second. However, it is not always possible to map each of these points to a line and column position in a source code file (in the presence of scrolling and file switching) in real time at data rates over 60 gaze points per second without data loss. Unfortunately, higher data rates are more desirable as they allow for finer granularity and more accurate study analyses. To alleviate this technological problem, a novel method for eye tracking data collection is presented. Instead of performing gaze analysis in real time, all telemetry (keystrokes, mouse movements, and eye tracker output) data during a study is recorded as it happens. Sessions are then replayed at a much slower speed allowing for ample time to map gaze point positions to the appropriate file, line, and column to perform additional analysis. A description of the method and corresponding tool, Deja Vu, is presented. An evaluation of the method and tool is conducted using three different eye trackers running at four different speeds (60 Hz, 120 Hz, 150 Hz, and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse, and Atom IDEs. Results show that Deja Vu can playback 100% of the data recordings, correctly mapping the gaze to corresponding elements, making it a well-founded and suitable post processing step for future eye tracking studies in software engineering. Finally, a proof of concept replication analysis of four tasks from two previous studies is performed. Due to using the Deja Vu approach, this replication resulted in richer collected data and improved on the number of distinct syntactic categories that gaze was mapped on in the code.

16.
Anaesthesia ; 75(3): 331-337, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31867715

RESUMEN

Postpartum haemorrhage is a leading cause of maternal death during childbirth. There is an increasing incidence of atonic postpartum haemorrhage in developed countries, and maternal obesity has been proposed as a contributing factor. The dose-response relationship of carbetocin in obese women has not yet been determined. We conducted a double-blind, dose-finding study of carbetocin using a biased coin up-and-down design in women with a body mass index ≥ 40 kg.m-2 undergoing elective caesarean section. The determinant for a successful response was satisfactory uterine tone, with no intra-operative need for additional uterotonic drugs. Secondary outcomes included the use of additional uterotonic drugs postoperatively, estimated blood loss and adverse effects of carbetocin administration. Thirty women were recruited to the study. The median (IQR [range]) body mass index was 44.93 (41.5-55.2 [40-66.5]) kg.m-2 . The ED90 of carbetocin was estimated as 62.9 (95%CI 57.0-68.7) µg using the truncated Dixon and Mood method, and 68 (95%CI 52-77) µg using the isotonic regression method. The estimated blood loss was 880 (621-1178 [75-2442]) ml. The overall rates of hypotension and hypertension after delivery were 40% and 6.7%, respectively, while nausea occurred in 26.7% of women. The ED90 for carbetocin in obese women at elective caesarean section is lower than the dose of 100 µg currently recommended by the Society of Obstetricians and Gynaecologists of Canada, but is approximately four times higher than the previously demonstrated ED90 of 14.8 µg in women with body mass index < 40 kg.m-2 .


Asunto(s)
Cesárea/métodos , Obesidad/complicaciones , Oxitócicos/administración & dosificación , Oxitocina/análogos & derivados , Adulto , Pérdida de Sangre Quirúrgica/prevención & control , Índice de Masa Corporal , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Oxitocina/administración & dosificación , Complicaciones Posoperatorias/fisiopatología , Complicaciones Posoperatorias/prevención & control , Hemorragia Posparto/etiología , Hemorragia Posparto/prevención & control , Embarazo , Estudios Prospectivos , Resultado del Tratamiento , Útero/efectos de los fármacos
17.
J Clin Microbiol ; 57(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30842232

RESUMEN

Plasmid-mediated colistin resistance (PMCR), a consequence of the mcr genes, is a significant public health concern given its potential to easily spread among clinical pathogens. Recently, it was discovered that MCR enzymes require zinc for activity. Thus, we modified the colistin broth-disk elution (CBDE) test to screen for plasmid-mediated colistin resistance (PMCR) genes based on any reduction of colistin MIC in the presence of EDTA. Eighty-five isolates of the order Enterobacteriales (12 mcr positive) were tested by CBDE ± EDTA. The sensitivity and specificity of the EDTA-CBDE method to detect PMCR compared to the molecular genotype results were 100% and 95.8%, respectively. Isolates positive by the EDTA-CBDE test should be further evaluated to confirm the presence of mcr genes.


Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana , Enterobacteriaceae/efectos de los fármacos , Ácido Edético , Enterobacteriaceae/genética , Genes MDR , Pruebas de Sensibilidad Microbiana/métodos , Fenotipo , Plásmidos/genética , Sensibilidad y Especificidad
18.
J Clin Microbiol ; 57(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282791

RESUMEN

Limited methods for colistin MIC determination are available to clinical microbiology laboratories. The purpose of this study was to evaluate the accuracy of the colistin broth disk elution (CBDE) test compared to that of broth microdilution (BMD) for identifying colistin MICs. CBDE was compared to colistin BMD using a collection of Gram-negative bacilli tested at two U.S. microbiology laboratories. The isolates tested included 121 retrospective clinical isolates, 45 prospective clinical isolates, and 6 mcr-1-positive Escherichia coli isolates. CBDE was performed with four 10-ml cation-adjusted Mueller-Hinton broth tubes per isolate, to which 0, 1, 2, and 4 colistin 10-µg disks were added, generating final concentrations in the tubes of 0 (growth control), 1, 2, and 4 µg/ml, respectively. MICs were evaluated visually and interpreted using Clinical and Laboratory Standards Institute breakpoints. Site 2 also compared CBDE to the reference broth macrodilution (BMAD) method (n = 110 isolates). Overall, CBDE yielded a categorical agreement (CA) and essential agreement (EA) of 98% and 99%, respectively, compared to the results of colistin BMD. Very major errors occurred for mcr-1-producing strains, with MICs fluctuating from 2 to 4 µg/ml on repeat testing. The results for all other isolates were in CA with those of BMD. CBDE versus BMAD had an EA of 100% and a CA of 100%. Compared to currently used techniques, CBDE is an easy and practical method to perform colistin MIC testing. Some mcr-1-producing isolates yielded MICs of 2 µg/ml by CBDE and 4 µg/ml by BMD. As such, the results for isolates with colistin MICs of 2 µg/ml by CBDE should be confirmed by the reference BMD method, and isolates with MICs of ≥2 µg/ml should be evaluated for the presence of mcr genes.


Asunto(s)
Antibacterianos/farmacología , Colistina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Errores Diagnósticos/estadística & datos numéricos , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/diagnóstico , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Estados Unidos
19.
Nat Chem Biol ; 13(1): 54-61, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27820797

RESUMEN

Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the ß-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of ß-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for ß-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Peptidil Transferasas/antagonistas & inhibidores , beta-Lactamas/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Peptidil Transferasas/metabolismo , Relación Estructura-Actividad , beta-Lactamas/química
20.
PLoS Biol ; 14(6): e1002475, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27276034

RESUMEN

The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology.


Asunto(s)
Celulosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Selección Genética , Streptomyces/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Celulasa/genética , Celulasa/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Hidrólisis , Filogenia , Plantas/metabolismo , Plantas/microbiología , ARN Ribosómico 16S/genética , Microbiología del Suelo , Especificidad de la Especie , Streptomyces/clasificación , Streptomyces/metabolismo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA