RESUMEN
Malfunctions in airway smooth muscle Ca2+-signalling leads to airway hyperresponsiveness in asthma and chronic obstructive pulmonary disease. Ca2+-release from intracellular stores is important in mediating agonist-induced contractions, but the role of influx via l-type Ca2+ channels is controversial. We re-examined roles of the sarcoplasmic reticulum Ca2+ store, refilling of this store via store-operated Ca2+ entry (SOCE) and l-type Ca2+ channel pathways on carbachol (CCh, 0.1-10 µM)-induced contractions of mouse bronchial rings and intracellular Ca2+ signals of mouse bronchial myocytes. In tension experiments, the ryanodine receptor (RyR) blocker dantrolene (100 µM) reduced CCh-responses at all concentrations, with greater effects on sustained rather than initial components of contraction. 2-Aminoethoxydiphenyl borate (2-APB, 100 µM), in the presence of dantrolene, abolished CCh-responses, suggesting the sarcoplasmic reticulum Ca2+ store is essential for contraction. The SOCE blocker GSK-7975A (10 µM) reduced CCh-contractions, with greater effects at higher (e.g. 3 and 10 µM) CCh concentrations. Nifedipine (1 µM), abolished remaining contractions in GSK-7975A (10 µM). A similar pattern was observed on intracellular Ca2+-responses to 0.3 µM CCh, where GSK-7975A (10 µM) substantially reduced Ca2+ transients induced by CCh, and nifedipine (1 µM) abolished remaining responses. When nifedipine (1 µM) was applied alone it had less effect, reducing tension responses at all CCh concentrations by 25% - 50%, with greater effects at lower (e.g. 0.1 and 0.3 µM) CCh concentrations. When nifedipine (1 µM) was examined on the intracellular Ca2+-response to 0.3 µM CCh, it only modestly reduced Ca2+ signals, while GSK-7975A (10 µM) abolished remaining responses. In conclusion, Ca2+-influx from both SOCE and l-type Ca2+ channels contribute to excitatory cholinergic responses in mouse bronchi. The contribution of l-type Ca2+ channels was especially pronounced at lower doses of CCh, or when SOCE was blocked. This suggests l-type Ca2+ channels might be a potential target for bronchoconstriction under certain circumstances.
Asunto(s)
Dantroleno , Nifedipino , Ratones , Animales , Nifedipino/farmacología , Dantroleno/farmacología , Músculo Liso/fisiología , Colinérgicos/metabolismo , Colinérgicos/farmacología , Bronquios , Contracción Muscular , Calcio/metabolismoRESUMEN
Collecting lymphatic vessels (cLVs) exhibit spontaneous contractions with a pressure-dependent frequency, but the identity of the lymphatic pacemaker cell is still debated. By analogy to pacemakers in the GI and lower urinary tracts, proposed cLV pacemaker cells include interstitial cells of Cajal like cells (ICLC), pericytes, as well as the lymphatic muscle (LMCs) cells themselves. Here we tested the extent to which these cell types are invested into the mouse cLV wall and if any cell type exhibited morphological and functional processes characteristic of pacemaker cells: a contiguous network; spontaneous Ca2+ transients; and depolarization-induced propagated contractions. We employed inducible Cre (iCre) mouse models routinely used to target these specific cell populations including: c-kitCreERT2 to target ICLC; PdgfrßCreERT2 to target pericytes; PdgfrαCreER™ to target CD34+ adventitial fibroblast-like cells or ICLC; and Myh11CreERT2 to target LMCs. These specific inducible Cre lines were crossed to the fluorescent reporter ROSA26mT/mG, the genetically encoded Ca2+ sensor GCaMP6f, and the light-activated cation channel rhodopsin2 (ChR2). c-KitCreERT2 labeled both a sparse population of LECs and round adventitial cells that responded to the mast cell activator compound 48-80. PdgfrßCreERT2 drove recombination in both adventitial cells and LMCs, limiting its power to discriminate a pericyte specific population. PdgfrαCreER™ labeled a large population of interconnected, oak leaf-shaped cells primarily along the adventitial surface of the vessel. Titrated induction of the smooth muscle-specific Myh11CreERT2 revealed a LMC population with heterogeneous morphology. Only LMCs consistently, but heterogeneously, displayed spontaneous Ca2+ events during the diastolic period of the contraction cycle, and whose frequency was modulated in a pressure-dependent manner. Optogenetic depolarization through the expression of ChR2 by Myh11CreERT2, but not PdgfrαCreER™ or c-KitCreERT2, resulted in a propagated contraction. These findings support the conclusion that LMCs, or a subset of LMCs, are responsible for mouse cLV pacemaking.