Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007181

RESUMEN

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Asunto(s)
Canalopatías , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Humanos , Canal Catiónico TRPC6/metabolismo , Canalopatías/metabolismo , Canales Catiónicos TRPC/metabolismo , Glomérulos Renales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Enfermedades Renales/metabolismo
2.
Kidney Int ; 103(6): 1056-1062, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750145

RESUMEN

Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Proteínas de Unión al GTP Monoméricas , Podocitos , Ratones , Animales , Podocitos/patología , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Proteinuria/patología , Ratones Transgénicos , Factores de Transcripción/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2342-2354, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28629718

RESUMEN

Primary forms of focal and segmental glomerulosclerosis (FSGS) are driven by circulating factors that cause dysfunction or loss podocytes. Rare genetic forms of FSGS can be caused by mutations in TRPC6, which encodes a Ca2+-permeable cationic channel expressed in mesangial cells and podocytes; and NPHS2, which encodes podocin, a TRPC6-binding protein expressed in podocyte slit diaphragm domains. Here we observed that exposing immortalized mouse podocytes to serum or plasma from recurrent FSGS patients for 24h increased the steady-state cell-surface abundance of TRPC6, accompanied by an increase in currents through endogenous TRPC6 channels evoked by a hypoosmotic stretch stimulus. These effects were mimicked by the soluble urokinase receptor (suPAR) and by tumor necrosis factor (TNF), circulating factors implicated in nephrotic syndromes. Most but not all of the recurrent FSGS plasma samples that we examined also caused a loss of podocin over a period of several hours. The loss of podocin was also seen following exposure to suPAR but not TNF. However, TNF increased the effects of suPAR on TRPC6 and podocin, and TNF and suPAR are required for the full effects of one of the recurrent FSGS plasma samples. The actions of FSGS plasma, suPAR and TNF on surface abundance of TRPC6 were blocked by cilengitide, an inhibitor of αvß3-integrin signaling. These data suggest that primary FSGS is a heterogeneous condition mediated by multiple circulating factors, and support TRPC6 and αvß3-integrin as potential therapeutic targets.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/metabolismo , Síndrome Nefrótico/metabolismo , Plasma , Podocitos/metabolismo , Suero , Canal Catiónico TRPC6/metabolismo , Adulto , Línea Celular Transformada , Femenino , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Integrina alfaVbeta3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Masculino , Proteínas de la Membrana/biosíntesis , Síndrome Nefrótico/patología , Permeabilidad , Podocitos/patología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Am Soc Nephrol ; 27(11): 3308-3319, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27020855

RESUMEN

Gain-of-function mutations of classic transient receptor potential channel 6 (TRPC6) were identified in familial FSGS, and increased expression of wild-type TRPC6 in glomeruli is observed in several human acquired proteinuric diseases. Synaptopodin, an actin binding protein that is important in maintaining podocyte function, is downregulated in various glomerular diseases. Here, we investigated whether synaptopodin maintains podocyte function by regulating podocyte surface expression and activity of TRPC6. We show indirect interaction and nonrandom association of synaptopodin and TRPC6 in podocytes. Knockdown of synaptopodin in cultured mouse podocytes increased the expression of TRPC6 at the plasma membrane, whereas overexpression of synaptopodin decreased it. Mechanistically, synaptopodin-dependent TRPC6 surface expression required functional actin and microtubule cytoskeletons. Overexpression of wild-type or FSGS-inducing mutant TRPC6 in synaptopodin-depleted podocytes enhanced TRPC6-mediated calcium influx and induced apoptosis. In vivo, knockdown of synaptopodin also caused increased podocyte surface expression of TRPC6. Administration of cyclosporin A, which stabilizes synaptopodin, reduced LPS-induced proteinuria significantly in wild-type mice but to a lesser extent in TRPC6 knockout mice. Furthermore, administration of cyclosporin A reversed the LPS-induced increase in podocyte surface expression of TRPC6 in wild-type mice. Our findings suggest that alteration in synaptopodin levels under disease conditions may modify intracellular TRPC6 channel localization and activity, which further contribute to podocyte dysfunction. Reducing TRPC6 surface levels may be a new approach to restoring podocyte function.


Asunto(s)
Proteínas de Microfilamentos/fisiología , Podocitos/metabolismo , Proteinuria/metabolismo , Canales Catiónicos TRPC/biosíntesis , Animales , Membrana Celular/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/ultraestructura , Canal Catiónico TRPC6
5.
Biochim Biophys Acta ; 1853(10 Pt A): 2610-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26193076

RESUMEN

PodocyteTRPC6 channels have been implicated in glomerular diseases. Syndecan-4 (Sdc4) is a membrane proteoglycan that can be cleaved to release a soluble ectodomain capable of paracrine and autocrine signaling. We have confirmed that overexpression of Sdc4 core protein increases surface abundance of TRPC6 channels in cultured podocytes, whereas Sdc4 knockdown has the opposite effect. Exposure to soluble Sdc4 ectodomain also increased the surface abundance of TRPC6, and increased cationic currents evoked by a diacylglycerol analog in podocytes. Sdc4 ectodomain increased generation of reactive oxygen species (ROS), reduced activation of RhoA, increased activation of Rac1, increased nuclear abundance of NFATc1, and increased total ß3-integrin. The effects of Sdc4 ectodomain on cell-surface TRPC6 were blocked by the ROS quencher TEMPOL, and by the Rac1 inhibitor NSC-23766, but were not blocked by inhibition of calcineurin-NFATc1 signaling. The Sdc4 core protein co-immunoprecipitates with ß3-integrin in cultured podocytes. Moreover, effects of Sdc4 ectodomain on TRPC6, ROS generation, Rac1 and RhoA modulation, and NFATc1 activation were blocked by cilengitide, a selective inhibitor of outside-in signaling through αv-containing integrins. Exposure to TNF, or serum from three patients with recurrent FSGS in relapse, increased shedding of podocyte Sdc4 ectodomains into the surrounding medium. This was also observed after treating podocytes with the metalloproteinase ADAM17 or after overexpression of the Sdc4 core protein. Increased concentrations of Sdc4 ectodomain were detected in urine of rats during acute puromycin aminonucleoside nephrosis. Locally generated Sdc4 may play a role in regulating TRPC6 channels, and may contribute to glomerular pathology.


Asunto(s)
Integrina alfaV/metabolismo , Podocitos/metabolismo , Transducción de Señal , Sindecano-4/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/farmacología , Línea Celular , Integrina alfaV/genética , Masculino , Ratones , Nefrosis/inducido químicamente , Nefrosis/genética , Nefrosis/metabolismo , Nefrosis/patología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Podocitos/patología , Puromicina Aminonucleósido/efectos adversos , Puromicina Aminonucleósido/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sindecano-4/genética , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
6.
J Pathol ; 236(1): 30-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25641678

RESUMEN

In diabetic nephropathy (DN), podocyte cytoskeletal rearrangement occurs followed by podocyte effacement and the development of proteinuria. PTEN (phosphatase and tensin homologue) is a ubiquitously expressed phosphatase that plays a critical role in cell proliferation, cytoskeletal rearrangement, and motility. In mouse models of diabetes mellitus, PTEN expression is reportedly decreased in mesangial cells, contributing to expansion of the mesangial matrix, but how PTEN in the podocyte influences the development of DN is unknown. We observed that PTEN expression is down-regulated in the podocytes of diabetic db/db mice and patients with DN. In cultured podocytes, PTEN inhibition caused actin cytoskeletal rearrangement and this response was associated with unbalanced activation of the small GTPases Rac1/Cdc42 and RhoA. In mice treated with PTEN inhibitor, actin cytoskeletal rearrangement occurred in podocytes and was accompanied by increased albumin excretion. We also created mice with an inducible deletion of PTEN selectively in podocytes. These mice exhibited increased albumin excretion and moderate foot process effacement. When the mice were challenged with a high fat diet, podocyte-specific knockout of PTEN resulted in substantially increased proteinuria and glomeruloclerosis compared to control mice fed a high fat diet or mice with PTEN deletion fed a normal diet. These results indicate that PTEN is involved in the regulation of cytoskeletal rearrangement in podocytes and that loss of PTEN predisposes to the development of proteinuria and DN.


Asunto(s)
Citoesqueleto/patología , Nefropatías Diabéticas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Podocitos/metabolismo , Albuminuria/metabolismo , Animales , Citoesqueleto/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Mesangio Glomerular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Podocitos/patología
7.
Adv Exp Med Biol ; 898: 201-49, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27161231

RESUMEN

Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.


Asunto(s)
Calcio/metabolismo , Sistemas de Mensajero Secundario , Canales Catiónicos TRPC/metabolismo , Humanos , Transporte Iónico , Canal Catiónico TRPC6
8.
Mol Pharmacol ; 87(2): 231-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425624

RESUMEN

The transcription factor signal transducer and activator of transcription-3 (STAT3) is activated by proinflammatory cytokines and circulating factors in many cell types. Synaptopodin (Synpo) is a cytoskeleton regulatory protein expressed in podocyte foot processes that regulates the dynamics of actin filaments and the stability of small GTPases. Here we show that inhibition of STAT3 signaling using the small-molecule inhibitor benzo[b]thiophene,6-nitro-,1,1-dioxide (Stattic), or by STAT3 knockdown by small interfering RNA, caused a decrease in Synpo mRNA and protein in an immortalized mouse podocyte cell line. This loss of Synpo, which occurred in 30-80 minutes, was also seen after treatment with the translational inhibitor cycloheximide. The loss of Synpo protein after Stattic or cycloheximide treatment did not occur when podocytes were simultaneously exposed to 1-[N-[(l-3-trans-carboxyoxirane-2-carbonyl)-l-leucyl]amino]-4-guanidinobutane (E-64), an inhibitor of thiol proteases such as cathepsin L. Treatment with interleukin-6 (IL-6) increased tyrosine phosphorylation of STAT3 and evoked a parallel increase in Synpo levels in podocytes. The stimulatory effect of IL-6 on Synpo was completely inhibited by pretreatment with Stattic. By contrast, 30-60-minute exposure to angiotensin II (Ang II) inhibited STAT3 signaling and concurrently reduced Synpo protein levels. The Ang II-evoked loss of Synpo was prevented by E-64 but not by inhibition of calcineurin or blockade of transient receptor potential cation channels. Inhibition of STAT3 by Stattic caused marked changes in the distribution of podocyte actin filaments, and caused a nearly complete suppression of the migration of these cells in wound assays, consistent with the loss of Synpo. Stattic treatment also caused loss of RhoA protein.


Asunto(s)
Regulación de la Expresión Génica , Podocitos/metabolismo , Factor de Transcripción STAT3/fisiología , Sinaptofisina/biosíntesis , Actinas/metabolismo , Animales , Línea Celular , Movimiento Celular/fisiología , Células Cultivadas , Ratones
9.
Am J Physiol Renal Physiol ; 309(2): F98-108, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26017975

RESUMEN

TNF has been implicated in glomerular diseases, but its actions on podocytes are not well understood. Endogenous TNF expression is markedly increased in mouse podocytes exposed to sera from patients with recurrent focal segmental glomerulosclerosis, and TNF is able to increase its own expression in these cells. Exposure of podocytes to TNF increased phosphorylation of NF-κB p65-RelA followed by increased tyrosine phosphorylation of STAT3. STAT3 activation was blocked by the NF-κB inhibitor JSH-23 and by the STAT3 inhibitor stattic, whereas TNF-evoked NF-κB activation was not affected by stattic. TNF treatment increased nuclear accumulation of nuclear factor of activated T cells (NFAT)c1 in podocytes, a process that occurred downstream of STAT3 activation. TNF also increased expression of cyclin D1 but had no effect on cyclin-dependent kinase 4, p27(kip), or podocin. Despite its effects on cyclin D1, TNF treatment for up to 72 h did not cause podocytes to reenter the cell cycle. TNF increased total expression of transient receptor potential (TRP)C6 channels through a pathway dependent on NFATc1 and increased the steady-state expression of TRPC6 subunits on the podocyte cell surface. TNF effects on TRPC6 trafficking required ROS. Consistent with this, La(3+)-sensitive cationic currents activated by a diacylglycerol analog were increased in TNF-treated cells. The effects of TNF on NFATc1 and TRPC6 expression were blocked by cyclosporine A but were not blocked by the pan-TRP inhibitor SKF-96365. TNF therefore influences multiple pathways previously implicated in podocyte pathophysiology and is likely to sensitize these cells to other insults.


Asunto(s)
Podocitos/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Línea Celular , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Masculino , Ratones , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción STAT3/metabolismo , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6
10.
FASEB J ; 28(4): 1769-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421402

RESUMEN

Lipid peroxidation through electrophilic molecules of extracellular origin is involved in the pathogenesis of many inflammatory conditions. To counteract free radical actions at the plasma membrane, cells host a variety of antioxidative enzymes. Here we analyzed localization, membrane topology, and trafficking of PON2 a member of the paraoxonase family of 3 enzymatically active proteins (PON1-3) found to have antiatherogenic properties. Immunohistochemistry localized PON2 to the villous tip of human intestinal epithelial cells. Employing membrane preparations, surface biotinylation experiments, and mutational analyses in HEK 293T and HeLa cells, we demonstrate that PON2 is a type II transmembrane protein. A hydrophobic stretch in the N terminus was identified as single transmembrane domain of PON2. The enzymatically active domain faced the extracellular compartment, where it suppressed lipid peroxidation (P<0.05) and regulated the glucosylceramide content, as demonstrated by mass spectrometry (P<0.05). PON2 translocation to the plasma membrane was dependent on intracellular calcium responses and could be induced to >10-fold as compared to baseline (P=0.0001) by oxidative stress. Taken together, these data identify the paraoxonase protein PON2 as a type II transmembrane protein, which is dynamically translocated to the plasma membrane in response to oxidative stress to counteract lipid peroxidation.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Membrana Celular/metabolismo , Peroxidación de Lípido , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Arildialquilfosfatasa/genética , Calcio/metabolismo , Células Epiteliales/enzimología , Glucosilceramidas/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunohistoquímica , Intestinos/citología , Intestinos/enzimología , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Estrés Oxidativo , Transporte de Proteínas , Interferencia de ARN
11.
Nephrol Dial Transplant ; 30(10): 1630-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25829324

RESUMEN

l-Glutamate (l-Glu) plays an essential role in the central nervous system (CNS) as an excitatory neurotransmitter, and exerts its effects by acting on a large number of ionotropic and metabotropic receptors. These receptors are also expressed in several peripheral tissues, including the kidney. This review summarizes the general properties of ionotropic and metabotropic l-Glu receptors, focusing on N-methyl-d-aspartate (NMDA) and Group 1 metabotropic glutamate receptors (mGluRs). NMDA receptors are expressed in the renal cortex and medulla, and appear to play a role in the regulation of renal blood flow, glomerular filtration, proximal tubule reabsorption and urine concentration within medullary collecting ducts. Sustained activation of NMDA receptors induces Ca(2+) influx and oxidative stress, which can lead to glomerulosclerosis, for example in hyperhomocysteinemia. Group 1 mGluRs are expressed in podocytes and probably in other cell types. Mice in which these receptors are knocked out gradually develop albuminuria and glomerulosclerosis. Several endogenous agonists of l-Glu receptors, which include sulfur-containing amino acids derived from l-homocysteine, and quinolinic acid (QA), as well as the co-agonists glycine and d-serine, are present in the circulation at concentrations capable of robustly activating ionotropic and metabotropic l-Glu receptors. These endogenous agonists may also be secreted from renal parenchymal cells, or from cells that have migrated into the kidney, by exocytosis or by transporters such as system x(-)(c), or by transporters involved in ammonia secretion. l-Glu receptors may be useful targets for drug therapy, and many selective orally-active compounds exist for investigation of these receptors as potential drug targets for various kidney diseases.


Asunto(s)
Ácido Glutámico/metabolismo , Riñón/metabolismo , Receptores de Glutamato/metabolismo , Animales , Humanos , Ratones
12.
J Am Soc Nephrol ; 25(7): 1509-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24511133

RESUMEN

Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry-based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains.


Asunto(s)
Barrera de Filtración Glomerular/fisiología , Fosfoproteínas/análisis , Fosfoproteínas/fisiología , Proteómica , Animales , Femenino , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Ratones , Fosforilación , Podocitos/fisiología
13.
Mol Pharmacol ; 86(2): 150-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24850910

RESUMEN

Previous studies have shown that the transcription factor signal transducer and activator of transcription-3 (STAT3) in podocytes plays an important role in progression of HIV nephropathy and in collapsing forms of glomerulonephritis. Here, we have observed that application of 100 nM angiotensin II (Ang II) to cultured podocytes for 6-24 hours causes a marked increase in the phosphorylation of STAT3 on tyrosine Y705 but has no effect on phosphorylation at serine S727. By contrast, Ang II treatment of short periods (20-60 minutes) caused a small but consistent suppression of tyrosine phosphylation of STAT3. A similar biphasic effect was seen after treatment with the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG), an agent that causes activation of Ca(2+)-permeable canonical transient receptor potential-6 (TRPC6) channels in podocytes. The stimulatory effects of Ang II on STAT3 phosphorylation were abolished by small-interfering RNA knockdown of TRPC6 and also by inhibitors of the Ca(2+)-dependent downstream enzymes calcineurin and Ca(2+)-calmodulin-dependent protein kinase II. The stimulatory effects of Ang II appear to be mediated by secretion and accumulation of an unknown factor into the surrounding medium, as they are no longer detected when medium is replaced every 2 hours even if Ang II is continuously present. By contrast, the inhibitory effect of Ang II on STAT3 phosphorylation persists with frequent medium changes. Experiments with neutralizing and inhibitory antibodies suggest that the STAT3 stimulatory factor secreted from podocytes is not interleukin-6, but also suggest that this factor exerts its actions through a receptor system that requires glycoprotein 130.


Asunto(s)
Angiotensina II/metabolismo , Podocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Ratones , Fosforilación/fisiología , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Canal Catiónico TRPC6
14.
J Biol Chem ; 288(51): 36598-609, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24194522

RESUMEN

Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Podocitos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Activación Enzimática , Glomerulonefritis Membranosa/metabolismo , Glomerulonefritis Membranosa/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Podocitos/patología , Proteinuria/metabolismo , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6
15.
J Cell Physiol ; 229(4): 434-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24037962

RESUMEN

Angiotensin II (AII) plays a major role in the progression of chronic kidney diseases. Podocytes are essential components of the ultrafiltration apparatus, and are targets for AII signaling. AII has been shown to increase generation of reactive oxygen species (ROS) in podocytes. Canonical transient receptor potential-6 (TRPC6) channels stimulate Ca(2+) influx in podocytes, and have been implicated in glomerular disease. We observed that AII increased cationic currents in rat podocytes in an isolated glomerulus preparation in which podocytes are still attached to the underlying capillary. This effect was completely blocked by SKF-96365, by micromolar La(3+) , and by siRNA knockdown of TRPC6, indicating that TRPC6 is the primary source of Ca(2+) influx mobilized by endogenously expressed angiotensin II receptors in these cells. These responses were also blocked by the AT1R antagonist losartan, the phospholipase C inhibitor D-609, and by inhibition of G protein signaling. The pan-protein kinase C inhibitor chelerythrine had no effect. Importantly, pretreating podocytes with the ROS quencher manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) eliminated AII activation of TRPC6. Significant reductions of AII effects on podocyte TRPC6 were also observed after pretreatment with NADPH oxidase inhibitors apocynin or diphenylene iodonium (DPI). These data suggest that ROS production permits activation of TRPC6 channels by G protein and PLC-dependent cascades initiated by AII acting on AT1Rs in podocytes. This pathway also provides a basis whereby two forms of cellular stress-oxidative stress and Ca(2+) overload-converge on common pathways relevant to disease.


Asunto(s)
Angiotensina II/farmacología , Regulación de la Expresión Génica/fisiología , Podocitos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Potenciales Evocados , Imidazoles/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética
16.
Am J Physiol Renal Physiol ; 306(9): F1088-97, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24553432

RESUMEN

Extracellular ATP may contribute to Ca(2+) signaling in podocytes during tubuloglomerular feedback (TGF) and possibly as a result of local tissue damage. TRPC6 channels are Ca(2+)-permeable cationic channels that have been implicated in the pathophysiology of podocyte diseases. Here we show using whole cell recordings that ATP evokes robust activation of TRPC6 channels in mouse podocyte cell lines and in rat podocytes attached to glomerular capillaries in ex vivo glomerular explants. The EC50 for ATP is ~10 µM and is maximal at 100 µM, and currents were blocked by the P2 antagonist suramin. In terms of maximal currents that can be evoked, ATP is the strongest activator of podocyte TRPC6 that we have characterized to date. Smaller currents were observed in response to ADP, UTP, and UDP. ATP-evoked currents in podocytes were abolished by TRPC6 knockdown and by pretreatment with 10 µM SKF-96365 or 50 µM La(3+). ATP effects were also abolished by inhibiting G protein signaling and by the PLC/PLA2 inhibitor D-609. ATP effects on TRPC6 were also suppressed by knockdown of the slit diaphragm scaffolding protein podocin, and also by tempol, a membrane-permeable quencher of reactive oxygen species. Modulation of podocyte TRPC6 channels, especially in foot processes, could provide a mechanism for regulation of glomerular function by extracellular nucleotides, possibly leading to changes in permeation through slit diaphragms. These results raise the possibility that sustained ATP signaling could contribute to foot process effacement, Ca(2+)-dependent changes in gene expression, and/or detachment of podocytes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Antioxidantes/farmacología , Señalización del Calcio , Línea Celular , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana , Proteínas de la Membrana/genética , Ratones , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2/metabolismo , Podocitos/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2Y/efectos de los fármacos , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Transfección , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
17.
Am J Physiol Renal Physiol ; 306(9): F1018-25, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24598806

RESUMEN

Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathogenesis of kidney disease and in the regulation of vascular smooth muscle tone, podocyte function, and a variety of processes in other cell types. The question of whether their gating is intrinsically mechanosensitive has been controversial. In this study we have examined activation of two alleles of TRPC6 transiently expressed in CHO-K1 cells: the wild-type human TRPC6 channel, and TRPC6-N143S, an allele originally identified in a family with autosomal dominant familial focal and segmental glomerulosclerosis (FSGS). We observed that both channel variants carried robust cationic currents that could be evoked by application of membrane-permeable analogs of diacylglycerol (DAG) or by the P2Y receptor agonist ATP. The amplitudes and characteristics of currents evoked by the DAG analog or ATP were indistinguishable in cells expressing the two TRPC6 alleles. By contrast, hypoosmotic stretch evoked robust currents in wild-type TRPC6 channels but had no discernible effect on currents in cells expressing TRPC6-N143S, indicating that the mutant form lacks mechanosensitivity. Coexpression of TRPC6-N143S with wild-type TRPC6 or TRPC3 channels did not alter stretch-evoked responses compared with when TRPC3 channels were expressed by themselves, indicating that TRPC6-N143S does not function as a dominant-negative. These data indicate that mechanical activation and activation evoked by DAG or ATP occur through fundamentally distinct biophysical mechanisms, and they provide support for the hypothesis that protein complexes containing wild-type TRPC6 subunits can be intrinsically mechanosensitive.


Asunto(s)
Adenosina Trifosfato/metabolismo , Diglicéridos/metabolismo , Activación del Canal Iónico , Mecanotransducción Celular , Mutación , Receptores Purinérgicos P2Y2/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Genotipo , Humanos , Potenciales de la Membrana , Mutagénesis Sitio-Dirigida , Ósmosis , Fenotipo , Canal Catiónico TRPC6 , Transfección
18.
Cells ; 13(2)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247863

RESUMEN

The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in a wide range of pathological conditions including primary nephrotic syndromes and acute kidney injuries. suPAR can trigger transduction cascades in podocytes by outside-in activation of αVß3-integrin, but there is evidence that the functional cell surface response element is actually a complex of different types of receptors, which may also include the receptor for advanced glycation end-products (RAGE) and formyl peptide receptors (FPRs). Here we observed that ROS accumulation and Src activation could be evoked by continuous 24 h exposure to either suPAR or the FPR agonist fMLF. Responses to suPAR and fMLF were completely blocked by either the FPR antagonist WRW4 or by the αV-integrin inhibitor cilengitide. Moreover, endogenous podocyte mouse Fpr1 co-immunoprecipitates with ß3-integrin, suggesting that these receptors occur as a complex on the cell surface. suPAR- and fMLF-evoked activation of Src and ROS differed in time course. Thus, robust pertussis toxin (PTX)-sensitive responses were evoked by 60 min exposures to fMLF but not to suPAR. By contrast, responses to 24 h exposures to either suPAR or fMLF were PTX-resistant and were instead abolished by knockdown of ß-arrestin-1 (BAR1). FPRs, integrins, and RAGE (along with various Toll-like receptors) can all function as pattern-recognition receptors that respond to "danger signals" associated with infections and tissue injury. The fact that podocytes express such a wide array of pattern-recognition receptors suggests that the glomerular filter is designed to change its function under certain conditions, possibly to facilitate clearance of toxic macromolecules.


Asunto(s)
Receptores de Formil Péptido , Receptores del Activador de Plasminógeno Tipo Uroquinasa , beta-Arrestina 1 , Animales , Ratones , Integrina beta3 , Podocitos , Especies Reactivas de Oxígeno , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Integrina alfa5
19.
Am J Physiol Cell Physiol ; 305(3): C276-89, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23657570

RESUMEN

Gain-of-function mutations in the transient receptor potential (TRP) cation channel subfamily C member 6 (TRPC6) gene and mutations in the NPHS2 gene encoding podocin result in nephrotic syndromes. The purpose of this study was to determine the functional significance of biochemical interactions between these proteins. We observed that gating of TRPC6 channels in podocytes is markedly mechanosensitive and can be activated by hyposmotic stretch or indentation of the plasma membrane. Stretch activation of cationic currents was blocked by small interfering RNA knockdown of TRPC6, as well as by SKF-96365 or micromolar La(3+). Stretch activation of podocyte TRPC6 persisted in the presence of inhibitors of phospholipase C (U-73122) and phospholipase A2 (ONO-RS-082). Robust stretch responses also persisted when recording electrodes contained guanosine 5'-O-(2-thiodiphosphate) at concentrations that completely suppressed responses to ANG II. Stretch responses were enhanced by cytochalasin D but were abolished by the peptide GsMTx4, suggesting that forces are transmitted to the channels through the plasma membrane. Podocin and TRPC6 interact at their respective COOH termini. Knockdown of podocin markedly increased stretch-evoked activation of TRPC6 but nearly abolished TRPC6 activation evoked by a diacylglycerol analog. These data suggest that podocin acts as a switch to determine the preferred mode of TRPC6 activation. They also suggest that podocin deficiencies will result in Ca(2+) overload in foot processes, as with gain-of-function mutations in the TRPC6 gene. Finally, they suggest that mechanical activation of TRP family channels and the preferred mode of TRP channel activation may depend on whether members of the stomatin/prohibitin family of hairpin loop proteins are present.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glomérulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Membrana Celular/metabolismo , Clorobenzoatos/farmacología , Cinamatos/farmacología , Citocalasina D/farmacología , Diglicéridos/farmacología , Estrenos/farmacología , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Células HEK293 , Humanos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/genética , Activación del Canal Iónico , Proteínas de la Membrana/genética , Ratones , Mutación , Síndrome Nefrótico , Péptidos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfolipasa A2 , Pirrolidinonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Venenos de Araña/farmacología , Canales Catiónicos TRPC/genética , Canal Catiónico TRPC6 , Tionucleótidos/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , ortoaminobenzoatos/farmacología
20.
Am J Physiol Cell Physiol ; 305(9): C960-71, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23948707

RESUMEN

Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathophysiology of glomerular diseases. TRPC6 channels are typically activated by diacylglycerol (DAG) during PLC-dependent transduction cascades. TRPC6 channels can also be activated by reactive oxygen species (ROS). We previously showed that podocin is required for DAG analogs to produce robust activation of TRPC6 channels in podocytes. Here we show that endogenous TRPC6 channels in immortalized podocytes reciprocally coimmunoprecipitate with the catalytic subunit of the NADPH oxidase NOX2 (gp91(phox)). The NOX2-TRPC6 interaction was not detected in cells stably expressing a short hairpin RNA targeting podocin, although NOX2 and TRPC6 were present at normal levels. Application of a membrane-permeable DAG analog [1-oleoyl-2-acetyl-sn-glycerol (OAG)] increased generation of ROS in podocytes, but this effect was not detected in podocin knockdown cells. OAG also increased steady-state surface expression of the NOX2 regulatory subunit p47(phox). In whole cell recordings, TRPC6 activation by OAG was reduced in podocytes pretreated with the NOX2 inhibitor apocynin, by the pan-NOX inhibitor diphenylene iodonium, and by tempol, a ROS quencher. Cholesterol depletion and disruption of lipid rafts by methyl-ß-cyclodextrin reduced activation of podocyte TRPC6 channels by OAG and also eliminated the NOX2-TRPC6 interaction as assessed by coimmunoprecipitation. These data suggest that active NOX2 assembles with TRPC6 at podocin-organized sterol-rich raft domains and becomes catalytically active in response to DAG. The localized production of ROS contributes to TRPC6 activation by chemical stimuli such as DAG. Podocin appears to be necessary for assembly of the NOX2-TRPC6 complex in lipid rafts.


Asunto(s)
Diglicéridos/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , NADPH Oxidasas/metabolismo , Podocitos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Células CHO , Línea Celular Transformada , Cricetinae , Cricetulus , Técnicas de Silenciamiento del Gen , Ratones , NADPH Oxidasa 2 , Podocitos/efectos de los fármacos , Unión Proteica/fisiología , Canal Catiónico TRPC6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA