RESUMEN
No Patient or Public Contribution, because the relevant data of this article comes from the literature database. PURPOSE: The present study aimed to investigate the trends and research status of sexual healthcare. METHODS: We searched the Web of Science database for relevant articles concerning sexual healthcare, published between 2009 and 31 December 2022. Data collected include: the number of publications, authors, journals, countries, institutions, keywords. VOSviewer and CiteSpace were used to conduct the bibliometric study and visualise the analysis. RESULTS: A total of 1450 publications were included. The number of publications on sexual healthcare shows a fluctuating upward trend, and a stable core group of authors has been formed. The Journal of Clinical Nursing published the most articles on sexual healthcare (140 publications). The United States of America published the most articles (723, 49.86%). The research institution with the highest number of publications is the University of São Paulo. According to the keyword, timeline view and prominence mapping analysis, we believe that 'Female sexual health', 'HIV', 'LGBT' and 'Sexual Healthcare Services' may be new research hotspots in the field of sexual healthcare. CONCLUSION: This study describes the research status of sexual healthcare research over the past 14 years. The findings of this study can provide helpful reference and guidance for the development trend and research direction of sexual healthcare.
Asunto(s)
Salud Sexual , Humanos , Femenino , Conducta Sexual , Bibliometría , Bases de Datos Factuales , Investigación sobre Servicios de SaludRESUMEN
The "memory effect" of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) in wet scrubber (WS) has become a frequent negative phenomenon in waste incineration field. This work focuses on studying the major influence factors and pathways of memory effect of PCDD/Fs in WS from the aspects of PCDD/F carriers and operating conditions. The PCDD/F contents of fillings used for over three years is 0.098 ng I-TEQ/g, which performs as a stable source of PCDD/Fs for thousands of hours with PCDD/F desorption rates ranged in 0.023-0.116 pg I-TEQ/g·h at 65 °C-93 °C. On the one hand, the filling layer has been the biggest PCDD/F storage part in WS (6845.1 µg). On the other hand, the generated yellow wrapping layer in long-term operation can limit the desorption of inner PCDD/Fs. The solubility of PCDD/Fs in scrubbing water (SW) performs a positive correlation with the content of suspended substances, and the increased temperature and pH value of SW both lead to a higher toxic concentration of PCDD/Fs dissolved from the fly ash to solutions. In addition, the built mass balance of PCDD/Fs around WS suggests the incomplete SW refreshing and sludge cleaning also contribute to the memory effect of PCDD/Fs through enhancing the liquid-phase PCDD/Fs in flue gas from SW. Based on this study, three suggestions are propounded on the operation of WS. The results of this study will provide essential evidence and guidelines for optimizing operation and inhibiting the PCDD/F memory effect in WS.
RESUMEN
Paired immunoglobulin-like receptor B (PirB) was identified as a myelin-associated inhibitory protein (MAIP) receptor that plays a critical role in axonal regeneration, synaptic plasticity and neuronal survival after stroke. In our previous study, a transactivator of transcription-PirB extracellular peptide (TAT-PEP) was generated that can block the interactions between MAIs and PirB. We found that TAT-PEP treatment improved axonal regeneration, CST projection and long-term neurobehavioural recovery after stroke through its effects on PirB-mediated downstream signalling. However, the effect of TAT-PEP on the recovery of cognitive function and the survival of neurons also needs to be investigated. In this study, we investigated whether pirb RNAi could alleviate neuronal injury by inhibiting the expression of PirB following exposure to oxygen-glucose deprivation (OGD) in vitro. In addition, TAT-PEP treatment attenuated the volume of the brain infarct and promoted the recovery of neurobehavioural function and cognitive function. This study also found that TAT-PEP exerts neuroprotection by reducing neuronal degeneration and apoptosis after ischemia-reperfusion injury. In addition, TAT-PEP improved neuron survival and reduced lactate dehydrogenase (LDH) release in vitro. Results also showed that TAT-PEP reduced malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) activity and reduced reactive oxygen species (ROS) accumulation in OGD-injured neurons. The possible mechanism was that TAT-PEP could contribute to the damage of neuronal mitochondria and affect the expression of cleaved caspase 3, Bax and Bcl-2. Our results suggest that PirB overexpression in neurons after ischaemic-reperfusion injury induces neuronal mitochondrial damage, oxidative stress and apoptosis. This study also suggests that TAT-PEP may be a potent neuroprotectant with therapeutic potential for stroke by reducing neuronal oxidative stress, mitochondrial damage, degeneration and apoptosis in ischemic stroke.
Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Daño por Reperfusión , Accidente Cerebrovascular , Humanos , Transactivadores/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Péptidos/farmacología , Oxígeno/metabolismo , Proteínas de la Mielina/metabolismo , Apoptosis , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismoRESUMEN
Post-stroke anxiety (PSA) is a kind of affective disorder occurring after a stroke, with anxiety as the primary clinical manifestation. PSA's mechanism is unclear, and there are few prevention and treatment measures. Our previous study found that HDAC3 could activate NF-κB signaling through mediated p65 deacetylation, which further influenced microglia activation. That implies HDAC3 may be the key mediator in ischemic stroke mice and modulates anxiety susceptibility to stress. This study established a PSA model in male C57BL/6 mice through photothrombotic stroke combined with chronic restrain stress. We focused on exploring whether esketamine administration can alleviate anxiety-like behavior and neuroinflammation, which may be associated with inhibiting HDAC3 expression and NF-κB pathway activation. The results showed that esketamine administration alleviated anxiety-like behavior in PSA mice. And the results showed that esketamine alleviated cortical microglial activation, altered microglial number, and kept morphology features. Furthermore, the results showed that the expression of HDAC3, phosphor-p65/p65, and COX1 significantly decreased in esketamine-treated PSA mice. Besides, we also found that esketamine reduced PGE2 expression, one of the primary regulators of negative emotions. Interestingly, our results indicate that esketamine reduced the perineuronal net (PNN) number in the pathological process of PSA. In conclusion, this study suggests esketamine could alleviate microglial activation, reduces inflammatory cytokine, and inhibits the expression of HDAC3 and NF-κB in the cortex of PSA mice to attenuate anxiety-like behavior. Our results provided a new potential therapeutic target for applying esketamine to PSA.
Asunto(s)
FN-kappa B , Accidente Cerebrovascular , Masculino , Ratones , Animales , FN-kappa B/metabolismo , Microglía/metabolismo , Ratones Endogámicos C57BL , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/etiologíaRESUMEN
In the present paper, bulk heterojunction polymer solar cells based on P3HT:PCBM and P3HT:PCBM:QDs active layer were fabricated and measured respectively. The experimental result showed that the addition of QDs can broaden the spectral response and enhance photoinduced electron transfer. The conversion efficiency of device with QDs is about 25% higher than that without QDs.
RESUMEN
Herein, N,P-rich carbon/carbon/Co2P2O7 hollow nanotubes with a multilayered wall structure were successfully fabricated for the ORR electrocatalyst. The hollow tube structure catalysts were obtained by carbonizing Co2P2O7/C coated with the phytate-doped PANI. The Co2P2O7/C was obtained by phosphorylating a basic cobalt carbonate with phytic acid (PA). Onset and positive half-wave potentials were measured at 0.90 and 0.84 V, respectively, with a diffusion-limited current density of 4.58 mA/cm2. Effect of the thickness of polyaniline (PANI) in the electrocatalyst precursor was also investigated. The specific surface area as well as the content of graphitic N altered as the time of PANI polymerization increased, resulting in remarkably different catalytic activities. This study of hollow nanotube catalysts exhibits efficient noble-metal-free oxygen reduction reaction electrocatalysts for other chemical systems, which will provide abundant electrochemical active centers and sufficient energy.
RESUMEN
We have synthesized water soluble zinc selenium (ZnSe) nanocrystals by using mercaotoacetic acid (TGA) as the stabilizer. The synthesized ZnSe nanocrystals were co-doped with poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) to fabricate an organic/ inorganic hybrid multilayer light-emitting device (LED). The structure of the device was indium-tin-oxide (ITO)/poly (ethylene-dioxythiophene):poly(styrenesul-fonate) (PEDOT:PSS)/MEH-PPV:ZnSe/bathocuproine (BCP)/tris-(8-hydroxylquinoline)-aluminum (Alq3)/Al. We demonstrate that the device has a lower driving voltage and increased current densities and power efficiencies owing to the co-doped ZnSe quantum dots. We obtained good efficiency of the devices when the quality ratio of MEH-PPV and ZnSe quantum dots was 1:1.
RESUMEN
Intestinal barrier injuries are common in uremia, which aggravates uremia. The goal of this study is to learn moreabout how electroacupuncture regulates gastrointestinal function, as well as to identify the importance of microglia in electroacupuncture regulation and the cannabinoid receptor signaling pathway in controlling the activity of intestinal glial cells. The mice were arbitrarily assigned to four groups: control, CKD, electroacupuncture stimulation, or AM251 (CB1 receptor antagonist). The mice model of uremia was established by adenine gavage. Western blotting revealed the development of tight junction proteins ZO-1, cannabinoid 1 receptor, glial specific GFAP, occludin, S100 ß, claudin-1, and JNK. GFAP and CB1R protein expression and co-localization of the intestinal glial cells were observed by double-labeled fluorescence. The expression of cannabinoid 1 receptor CB1R in the intestinal glial cells was increased after electroacupuncture. The expression of tight junction protein, GFAP, S100 ß, and CB1R protein was up-regulated after electroacupuncture, and the dysfunction of the intestinal barrier in uremia was corrected. Nevertheless, AM251, a CB1R antagonist, reversed the effect of electroacupuncture. Electroacupuncture can protect the intestinal barrier through the intestinal glial cell CB1R, and the effect is achieved by inhibiting the JNK pathway.
Asunto(s)
Cannabinoides , Electroacupuntura , Uremia , Animales , Ratones , Neuroglía , Receptores de CannabinoidesRESUMEN
The blood-brain barrier (BBB) is an important barrier that separates brain tissue from peripheral blood. The permeability of the BBB can be destroyed by external harmful factors, such as lipopolysaccharide (LPS), which contributes to neuroinflammation and central nervous system diseases. The present study aims to investigate the protective effects of Omarigliptin against LPS-induced neuroinflammation and the underlying mechanism using a series of both in vivo and in vitro experiments. A neuroinflammation model was established by intraperitoneal injection of LPS into mice. We found that administration of Omarigliptin reduced LPS-induced inflammatory responses by inhibiting the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Importantly, we found that Omarigliptin protected the integrity of the BBB against LPS by increasing the expression of the tight junction proteins claudin-1 and claudin-5. Our results also demonstrate that Omarigliptin reduced LPS-induced increase in expressions of matrix matalloproteinases-2 (MMP-2) and matrix matalloproteinases-9 (MMP-9) at both the mRNA and protein levels. Notably, Omarigliptin showed a powerful beneficial effect against LPS-induced cell damage in bEnd.3 brain endothelial cells by reducing the release of high mobility group box chromosomal protein 1 (HMGB-1). Consistently, Omarigliptin ameliorated LPS-induced exacerbation of endothelial permeability by increasing the expressions of claudin-1 and claudin-5 and reducing the expression of MMP-2 and MMP-9. Mechanistically, Omarigliptin inhibited the activation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88/nuclear factor κB (TLR4/Myd88/NF-κB) signaling pathway. On the basis of these findings, we concluded that Omarigliptin might mitigate LPS-induced neuroinflammation and dysfunction of the integrity of the blood-brain barrier.
Asunto(s)
Barrera Hematoencefálica , Lipopolisacáridos , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Compuestos Heterocíclicos con 2 Anillos , Lipopolisacáridos/toxicidad , Ratones , FN-kappa B/metabolismo , PiranosRESUMEN
CFD modelling and simulation is an effective means of optimizing the design and operation of moving grate waste incinerators. Conventional approach models the grate combustion and the furnace combustion separately by using an in-bed/over-bed coupling procedure. In this paper, a comprehensive two-fluid reacting model that integrates the gas-solid grate incineration and the gas turbulent combustion in one scheme is developed for industrial incinerators. Realistic grate geometry and direct simultaneous coupling of the fuel bed and the freeboard gas phase are realized. According to different treatments of the solid phase, the whole incinerator is divided into three regions, namely the packed bed region, the fall region and the furnace region. The kinetic theory of granular flow (KTGF) is introduced to describe the rheological properties of waste particles, and the Ergun model is used for the gas-solid drag. Thermal conversion of wastes is characterized by the heterogeneous reactions of moisture evaporation, devolatilization, char-O2 combustion and the homogeneous reactions of hydrocarbons combustion. Distributions of temperatures and gas species are predicted and validated by measurements. Particle properties are calculated to reveal the grate incineration characteristics. Effects of waste throughput on the incineration are also investigated. Overall, the present model provides a new methodology of in-bed and over-bed integration for the moving grate incinerator simulation.
Asunto(s)
Incineración , Residuos Industriales , Algoritmos , Modelos Teóricos , Residuos Sólidos , TemperaturaRESUMEN
The diffusion coatings were deposited on commercially pure Ti and Ti-6Al-4V alloy at up to 1000 °C for up to 10 h using the pack cementation method. The pack powders consisted of 4 wt% Al (Al reservoir) and 4 wt% NH4Cl (activator) which were balanced with Al2O3 (inert filler). The growth kinetics of coatings were gravimetrically measured by a high precision balance. The aluminised specimens were characterised by means of scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). At the early stages of deposition, a TiO2 (rutile) scale, other than aluminide coating, was developed on both materials at <900 °C. As the experimental temperature arose above 900 °C, the rutile layer became unstable and reduced to the low oxidation state of Ti oxides. When the temperature increased to 1000 °C, the TiO2 scale dissociated almost completely and the aluminide coating began to develop. After a triple-layered coating was generated, the coating growth was governed by the outward migration of Ti species from the substrates and obeyed the parabolic law. The coating formed consisted of an outer layer of Al3Ti, a mid-layer of Al2Ti and an inner layer of AlTi. The outer layer of Al3Ti dominated the thickness of the aluminide coating.
RESUMEN
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.