Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 43(8): 2745-2757, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38478457

RESUMEN

We present a new method to measure sub-microcurie activities of photon-emitting radionuclides in organs and lesions of small animals in vivo. Our technique, named the collimator-less likelihood fit, combines a very high sensitivity collimatorless detector with a Monte Carlo-based likelihood fit in order to estimate the activities in previously segmented regions of interest along with their uncertainties. This is done directly from the photon projections in our collimatorless detector and from the region of interest segmentation provided by an x-ray computed tomography scan. We have extensively validated our approach with 225Ac experimentally in spherical phantoms and mouse phantoms, and also numerically with simulations of a realistic mouse anatomy. Our method yields statistically unbiased results with uncertainties smaller than 20% for activities as low as ~111Bq (3nCi) and for exposures under 30 minutes. We demonstrate that our method yields more robust recovery coefficients when compared to SPECT imaging with a commercial pre-clinical scanner, specially at very low activities. Thus, our technique is complementary to traditional SPECT/CT imaging since it provides a more accurate and precise organ and tumor dosimetry, with a more limited spatial information. Finally, our technique is specially significant in extremely low-activity scenarios when SPECT/CT imaging is simply not viable.


Asunto(s)
Método de Montecarlo , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único , Ratones , Animales , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Simulación por Computador , Tomografía Computarizada por Rayos X/métodos
2.
Adv Biol (Weinh) ; 6(10): e2200087, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778828

RESUMEN

Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Vesículas Extracelulares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Bioingeniería , Sistemas de Liberación de Medicamentos , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA