Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814359

RESUMEN

Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.

2.
Sleep Med ; 100: 269-279, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36148759

RESUMEN

OBJECTIVE: Previous studies indicate that propofol can help with recovery from sleep deprivation and has anti-anxiety effects. However, the underlying neurochemical mechanism remains unclear. This study aimed to investigate the effects of dopamine transporter (DAT) in the ventral tegmental area (VTA) on sleep and anxiety recovery after propofol anesthesia in rats with 24 h total sleep deprivation (TSD). METHODS: Adult male Sprague-Dawley rats were in natural sleep or sleep deprived for 24 h in a sleep deprivation rat system. The rats received propofol anesthesia (75 mg/kg, i.p.) or natural sleep. Dopamine transporter knockdown was performed by microinjection of AAV-DAT-RNAi vector. EEG was measured in each group to evaluate the subsequent sleep. The elevated plus maze test (EPMT) and open field test (OFT) were used to evaluate locomotion and anxiety level in rats. Immunofluorescence was used to verify virus location and transfection efficiency. RESULTS: Compared with NC group, the anxiety level of Propofol group showed no significant difference, but REM sleep decreased. Compared with the TSD group, the anxiety level of the TSD + Propofol group was reduced and the sleep recovery was closer to baseline. Compared with TSD + AAV-NC group, anxiety level and sleep time increased in TSD + AAVi group, REM increased within 24 h after sleep deprivation. The sleep time of TSD + AAVi + Propofol group was between those of TSD + AAV-NC group and TSD + AAVi group. TSD + AAV-NC + Propofol group had the least sleep time and the lowest anxiety level. CONCLUSION: 1. Propofol did not change anxiety level in normal rats, but reduced REM sleep, while it could accelerate sleep recovery and reduce anxiety level in sleep-deprived rats. 2. In sleep deprived rats with DAT knockdown, propofol improved sleep and anxiety levels more slowly, especially producing more REM rebound, suggesting that the improvement of sleep and anxiety levels in sleep-deprived rats with propofol may be related to DAT in VTA region.


Asunto(s)
Anestesia , Propofol , Ratas , Masculino , Animales , Privación de Sueño , Propofol/farmacología , Área Tegmental Ventral , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/farmacología , Ratas Sprague-Dawley , Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA