Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Biol Evol ; 36(6): 1187-1200, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30850829

RESUMEN

The mass application of whole mitogenome (MG) sequencing has great potential for resolving complex phylogeographic patterns that cannot be resolved by partial mitogenomic sequences or nuclear markers. North American periodical cicadas (Magicicada) are well known for their periodical mass emergence at 17- and 13-year intervals in the north and south, respectively. Magicicada comprises three species groups, each containing one 17-year species and one or two 13-year species. Within each life cycle, single-aged cohorts, called broods, of periodical cicadas emerge in different years, and most broods contain members of all three species groups. There are 12 and three extant broods of 17- and 13-year cicadas, respectively. The phylogeographic relationships among the populations and broods within the species groups have not been clearly resolved. We analyzed 125 whole MG sequences from all broods and seven species within three species groups to ascertain the divergence history of the geographic and allochronic populations and their life cycles. Our mitogenomic phylogeny analysis clearly revealed that each of the three species groups had largely similar phylogeographic subdivisions (east, middle, and west) and demographic histories (rapid population expansion after the last glacial period). The mitogenomic phylogeny also partly resolved the brood diversification process, which could be explained by hypothetical temporary life cycle shifts, and showed that none of the 13- and 17-year species within the species groups was monophyletic, possibly due to gene flow between them. Our findings clearly reveal phylogeographic structures in the three Magicicada species groups, demonstrating the advantage of whole MG sequence data in phylogeographic studies.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Hemípteros/genética , Animales , Variación Genética , Filogeografía , Estados Unidos
2.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30870981

RESUMEN

The assassin bug, Sphedanolestes impressicollis (Hemiptera: Reduviidae), is widely distributed in East Asia. It is an ideal model for evaluating the effects of climatic fluctuation and geographical events on the distribution patterns of East Asian reduviids. Here, we used two mitochondrial genes and one nuclear gene to investigate the phylogeographic pattern of the assassin bug based on comprehensive sampling in China, Japan, South Korea, Vietnam, and Laos. High levels of genetic differentiation were detected among the geographic populations classified into the northern and southern groups. A significant correlation was detected between genetic and geographical distances. The East China Sea land bridge served as a "dispersal corridor" during Pleistocene glaciation. The estimated divergence time indicated that the northern group may have separated from the eastern Chinese populations when the sea level rapidly rose during the "Ryukyu Coral Sea Stage" and the East China Sea land bridge was completely submerged. Demographic history and ecological niche modeling suggested that appropriate climatic conditions may have accounted for the rapid spread across the Korean Peninsula and Japan during the late Pleistocene. Our study underscores the pivotal roles of the Pleistocene sea level changes and climatic fluctuations in determining the distribution patterns of East Asian reduviids.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Genes Mitocondriales/genética , Mitocondrias/genética , Triatoma/genética , Animales , Clima , Ecosistema , Asia Oriental , Filogenia , Filogeografía/métodos
3.
Biology (Basel) ; 13(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38785787

RESUMEN

The assassin bug Sycanus bifidus has a wide distribution across southern China. This study explored its distribution and evolution by analyzing mitochondrial and nuclear ribosomal RNA genes, revealing how Pleistocene climate and geological changes shaped its phylogeography. We identified two main clades, A and B, that diverged in the Middle Pleistocene. Hainan Island's populations form a unique group within Clade A, suggesting that the Qiongzhou Strait served as a dispersal corridor during glaciation. Rising sea levels likely separated the Hainan population afterward. Ecological niche modeling showed that both populations have been viable since the last interglacial period, with demographic analyses indicating possible expansions during the Middle and Late Pleistocene, driven by favorable climates. This study highlights the significant effects of Pleistocene sea-level and climatic changes on the distribution and evolution of S. bifidus in China.

4.
Nat Commun ; 15(1): 1379, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355730

RESUMEN

Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.


Asunto(s)
Áfidos , Avispas , Humanos , Animales , Avispas/genética , China , Selección Genética , Áfidos/genética , Variación Genética , Interacciones Huésped-Parásitos
5.
Int J Biol Macromol ; 231: 123301, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657550

RESUMEN

Human activities facilitate long-distance dispersal of insects beyond their native range. In particular, the transportation of live plants offers diffusion opportunities for some insects with weak flight abilities. The increase in urban afforestation also help insect reside in urban habitats. The flower thrips, Frankliniella intonsa, is a widespread pest that causes serious damage to many economically important plants. Human activities are likely to facilitate the dispersal of this pest, however, the population genetic structure of this pest remains unclear. Herein, high-throughput sequencing was used to obtain 149 whole mitochondrial genomes of flower thrips from 28 geographic populations in China. Population genetic analyses, phylogenetic reconstruction, and inference of demographic history were then performed. A weak genetic structure was found among all populations across large geographic distance in China, in which five mitochondrial haplotype lineages were resolved. One of the lineages was identified to be shared among most samples collected from central city areas, which may be derived from the surrounding areas. Demographic history analyses suggested a recent population expansion of F. intonsa. Overall, the present population genetic structure of flower thrips in China may be promoted by human-mediated urban afforestation across the country.


Asunto(s)
Genoma Mitocondrial , Thysanoptera , Animales , Humanos , Thysanoptera/genética , Filogenia , Insectos/genética , Plantas/genética , Flores
6.
Evol Appl ; 16(4): 880-894, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37124089

RESUMEN

Insect speciation is among the most fascinating topics in evolutionary biology; however, its underlying mechanisms remain unclear. Allopatric speciation represents one of the major types of speciation and is believed to have frequently occurred during glaciation periods, when climatic oscillation may have caused suitable habitats to be fragmented repeatedly, creating geographical isolation among populations. However, supporting evidence for allopatric speciation of insects in East Asia during the Pleistocene glaciation remains lacking. We aim to investigate the effect of climatic oscillation during the Pleistocene glaciation on the diversification pattern and evolutionary history of hemipteran insects and to test the hypothesis of Pleistocene species stability using spinous assassin bugs Sclomina (Hemiptera: Reduviidae), a small genus widely distributed in southern China but was later found to have cryptic species diversity. Here, using the whole mitochondrial genome (mitogenome) and nuclear ribosomal RNA genes, we investigated both interspecific and intraspecific diversification patterns of spinous assassin bugs. Approximate Bayesian computation, ecological niche modeling, and demographic history analyses were also applied to understand the diversification process and driven factors. Our data suggest that the five species of Sclomina are highly diverged, despite three of them currently being cryptic. Speciation occurred during the Pleistocene when suitable distribution areas were possibly fragmented. Six phylogeographic groups in the type species S. erinacea were identified, among which two groups underwent expansion during the early Last Glacial Period and after Last Glacier Maximum. Our analyses suggest that this genus may have experienced climate-driven habitat fragmentation and postglacial expansion in the Pleistocene, promoting allopatric speciation and intraspecific diversification. Our results reveal underestimated species diversity in a small insect group and illustrate a remarkable example of allopatric speciation of insects in East Asia promoted by Pleistocene climatic oscillations. These findings provide important insights into the speciation processes and aid the conservation of insect species diversity.

7.
iScience ; 26(1): 105770, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590161

RESUMEN

Lichens are well known as pioneer organisms or stress-tolerant extremophiles, potentially playing a core role in the early formation of terrestrial ecosystems. Epiphytic macrolichens are known to contribute to the water- and nutrient cycles in forest ecosystem. But due to the scarcity of fossil record, the evolutionary history of epiphytic macrolichens is poorly documented. Based on new fossil of Jurassic Daohugouthallus ciliiferus, we demonstrate the hitherto oldest known macrolichen inhabited a gymnosperm branch. We applied energy dispersive X-ray spectroscopy and geometric morphometric analysis to complementarily verify lichen affinity of D. ciliiferus and quantitatively assess the potential relationships with extant lichenized lineages, providing new approaches for study of this lichen adpression fossil. Considering the results, and the inferred age of D. ciliiferus, a new family, Daohugouthallaceae, is established. This work updates current knowledge to the early evolution of epiphytic macrolichens and reveals more complex lichen-plant interactions in a Jurassic forest ecosystem.

8.
Insects ; 12(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809525

RESUMEN

Sclomina Stål, 1861 (Heteroptera: Reduviidae: Harpactorinae) is endemic to China and Vietnam, with only two species, Sclomina erinacea Stål, 1861 and Sclomina guangxiensis Ren, 2001, characterized by spinous body and dentate abdominal connexivum. However, due to variable morphological characteristics, Sclomina erinacea, which is widely distributed in South China, is possibly a complex of cryptic species, and Sclomina guangxiensis was suspected to be an extreme group of the S. erinacea cline. In the present study, we conducted species delimitation and phylogenetic analyses based on the mitochondrial cytochrome c oxidase subunit I (COI) gene sequences of 307 Sclomina specimens collected from 30 sampling localities combined with morphological evidence. The result showed that all samples used in this study were identified as five species: Sclomina guangxiensis is a valid species, and Sclomina erinacea actually includes three cryptic species: Sclomina xingrensis P. Zhao and Cai sp. nov., Sclomina pallens P. Zhao and Cai sp. nov., and Sclomina parva P. Zhao and Cai sp. nov. In this paper, the genus Sclomina is systematically revised, and the morphological characteristics of the five species are compared, described, and photographed in detail. We elucidate the evolutionary history of Sclomina based on results of estimated divergence time. The body shape and coloration (green in nymph and brown in adult) of Sclomina match their environment and mimic the Rubus plants on which they live. The symbiotic relationship between Sclomina and spinous Rubus plants is presented and discussed.

9.
Mol Ecol Resour ; 21(3): 941-954, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33314728

RESUMEN

Aphidius gifuensis is a parasitoid wasp that has been commercially bred and released in large scale as a biocontrol agent for the management of aphid pests. As a highly efficient endoparasitoid, it is also an important model for exploring mechanisms of parasitism. Currently, artificially bred populations of this wasp are facing rapid decline with undetermined cause, and mechanisms underlying its parasitoid strategy remain poorly understood. Exploring the mechanism behind its population decline and the host-parasitoid relationship is impeded partly due to the lack of a comprehensive genome data for this species. In this study, we constructed a high-quality reference genome of A. gifuensis using Oxford Nanopore sequencing and Hi-C (proximity ligation chromatin conformation capture) technology. The final genomic assembly was 156.9 Mb, with a contig N50 length of 3.93 Mb, the longest contig length of 10.4 Mb and 28.89% repetitive sequences. 99.8% of genome sequences were anchored onto six linkage groups. A total of 11,535 genes were predicted, of which 90.53% were functionally annotated. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed the completeness of assembled genome is 98.3%. We found significantly expanded gene families involved in metabolic processes, transmembrane transport, cell signal communication and oxidoreductase activity, in particular ATP-binding cassette (ABC) transporter, Cytochrome P450 and venom proteins. The olfactory receptors (ORs) showed significant contraction, which may be associated with the decrease in host recognition. Our study provides a solid foundation for future studies on the molecular mechanisms of population decline as well as host-parasitoid relationship for parasitoid wasps.


Asunto(s)
Áfidos , Genoma de los Insectos , Secuenciación de Nanoporos , Animales , Áfidos/genética , Cromosomas de Insectos , Anotación de Secuencia Molecular , Filogenia , Tecnología
10.
Evol Appl ; 14(4): 915-930, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33897812

RESUMEN

Biological invasion has been a serious global threat due to increasing international trade and population movements. Tracking the source and route of invasive species and evaluating the genetic differences in their native regions have great significance for the effective monitoring and management, and further resolving the invasive mechanism. The spotted lanternfly Lycorma delicatula is native to China and invaded South Korea, Japan, and the United States during the last decade, causing severe damages to the fruits and timber industries. However, its global phylogeographic pattern and invasion history are not clearly understood. We applied high-throughput sequencing to obtain 392 whole mitochondrial genome sequences from four countries to ascertain the origin, dispersal, and invasion history of the spotted lanternfly. Phylogenomic analyses revealed that the spotted lanternfly originated from southwestern China, diverged into six phylogeographic lineages, and experienced northward expansion across the Yangtze River in the late Pleistocene. South Korea populations were derived from multiple invasions from eastern China and Japan with two different genetic sources of northwestern (Loess Plateau) and eastern (East Plain) lineages in China, whereas the each of Japan and the United States had only one. The United States populations originated through single invasive event from South Korea, which served as a bridgehead of invasion. The environmental conditions, especially the distribution of host Ailanthus trees, and adaptability possibly account for the rapid spread of the spotted lanternfly in the native and introduced regions.

11.
Mitochondrial DNA B Resour ; 5(3): 3685-3687, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33367060

RESUMEN

This study completes the sequencing and annotation of the mitochondrial genome (mitogenome) of Hyalopterus pruni (Hemiptera: Aphididae) by using the high-throughput sequencing. The mitogenome is a typical circular DNA of 15,410 bp with 86.2% A + T content, and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, a repeat region between tRNA-Glu and tRNA-Phe, and a control region. The gene order follows the putative ancestral arrangements of insect mitogenome. All 13 protein-coding genes start with codon ATN and terminate with TAA or a single T. All tRNA genes have typical clover-leaf structure except for tRNA-SerAGN. The control region is 638 bp in length with 86.0% A + T content. The phylogenetic tree supports the monophyly of Aphidini and Macrosiphini in Aphidinae and the sister relationship between Hyalopterus pruni and Schizaphis graminum.

12.
Int J Biol Macromol ; 138: 912-918, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362022

RESUMEN

Fruit flies (Drosophilidae: Drosophila) are commonly found in daily life and have long been used as model organisms in biology researches. Drosophila mercatorum is one important member of the Drosophila genus and has been used to study centrosome assembly of cells. In this study, we sequenced and analyzed the mitochondrial genome (mitogenome) of D. mercatorum, finding that it contains the typical structure of 37 genes and a control region. The arrangement of mitochondrial genes is in accordance with that in other Drosophila species, which is considered the ancestral organization of insects' mitogenomes. Phylogenetic analyses were performed based on 23 species of Drosophila. Our results supported two monophyletic subgenera, Drosophila and Sophophora, except for D. willistoni which was presented as an early offshoot of Drosophila. The topology ((D. yakuba + D. erecta) + D. melanogaster) was supported. We further compared the mitogenomes of parthenogenesis and sexual reproduction strains of D. mercatorum. However, only one synonymous mutation in COI gene was identified, indicating mitogenomic evolution is not strongly correlated with the different reproductive modes of this species. Taken together, our results demonstrate that mitogenome is an effective molecular marker that can be further used in phylogenetic studies of Drosophila and other organisms.


Asunto(s)
Drosophila/clasificación , Drosophila/genética , Evolución Molecular , Genoma Mitocondrial , Genómica , Filogenia , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biología Computacional/métodos , Femenino , Genómica/métodos , Masculino
13.
Int J Biol Macromol ; 118(Pt B): 1565-1573, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29981333

RESUMEN

A large-sized assassin bug Agriosphodrus dohrni (Signoret), has been recorded from India, Vietnam, China and Japan. It is one of the potential biological control agents against some important agricultural and forest pests. This species is speculated to have invaded Japan from its native range in China about 60 years ago. We used three mitochondrial gene fragments (COI, Cytb, and ND5) and one nuclear gene fragment (EF-1α) to clarify the invasion history of A. dohrni and assess the effects of geographic events and associated ecological adaptation on the distribution pattern. The native populations of A. dohrni in China are divided into three distinct groups, which might be molded by the Early Pleistocene glaciation event and diverged during the Calabrian Stage. However, consistent with the hypothesis of a recent invasion, extremely low level of genetic variation was detected in the Japanese populations, with only two haplotypes for the combined mitochondrial genes. Both the splits network and the ML/BI phylogenetic trees revealed that haplotypes of Japan were more closely-related to those from eastern China. Therefore, we postulate that there has been only one introduction event, probably from somewhere around the Nanjing (NJ) and Lin'an (LA) populations of eastern China.


Asunto(s)
Núcleo Celular/genética , Genes Mitocondriales/genética , Especies Introducidas , Reduviidae/genética , Adaptación Fisiológica/genética , Animales , Variación Genética , Japón , Filogenia , Reduviidae/fisiología , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA