Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Rev Mol Cell Biol ; 12(5): 308-19, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21508987

RESUMEN

All cells exist within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These cues can be disrupted through perturbations to mechanotransduction, from the nanoscale-level to the tissue-level, which compromises tensional homeostasis to promote pathologies such as cardiovascular disease and cancer. The mechanisms of such perturbations suggest that a complex interplay exists between the extracellular microenvironment and cellular function. Furthermore, sustained disruptions in tensional homeostasis can be caused by alterations in the extracellular matrix, allowing it to serve as a mechanically based memory-storage device that can perpetuate a disease or restore normal tissue behaviour.


Asunto(s)
Matriz Extracelular/fisiología , Homeostasis/fisiología , Uniones Intercelulares/fisiología , Mecanotransducción Celular/fisiología , Animales , Adhesión Celular/fisiología , Humanos , Modelos Biológicos , Estrés Mecánico
2.
Nature ; 511(7509): 319-25, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25030168

RESUMEN

Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.


Asunto(s)
Glicocálix/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Mama/citología , Mama/metabolismo , Mama/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Fibroblastos , Glicocálix/química , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Integrinas/química , Ratones , Terapia Molecular Dirigida , Mucina-1/metabolismo , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes , Unión Proteica , Receptores de Superficie Celular
3.
Angew Chem Int Ed Engl ; 58(21): 7008-7012, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-30912228

RESUMEN

Bright long-wavelength-excitable semiconducting polymer dots (LWE-Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE-Pdots have been obtained by incorporating a near-infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor-acceptor (D-A) system. However, they usually suffer from severe concentration quenching and a trade-off between fluorescence quantum yield (Φf ) and absorption cross-section (σ). Herein, we describe a ternary component (D1 /D2 -A) strategy to achieve ultrabright, green laser-excitable Pdots with narrow-band NIR emission by introducing a BODIPY-based assistant polymer donor as D1 . The D1 /D2 -A Pdots possess improved Φf and σ compared to corresponding binary D2 -A Pdots. Their Φf is as high as 40.2 %, one of the most efficient NIR Pdots reported. The D1 /D2 -A Pdots show ultrahigh single-particle brightness, 83-fold brighter than Qdot 705 when excited by a 532 nm laser. When injected into mice, higher contrast in vivo tumor imaging was achieved using the ternary Pdots versus the binary D-A Pdots.


Asunto(s)
Compuestos de Boro/química , Rayos Infrarrojos , Neoplasias Experimentales/patología , Polímeros/química , Puntos Cuánticos , Semiconductores , Animales , Fluorescencia , Ratones
4.
J Am Chem Soc ; 139(20): 6911-6918, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28459559

RESUMEN

Developing probes for the detection of reactive oxygen species (ROS), a hallmark of many pathophysiological process, is imperative to both understanding the precise roles of ROS in many life-threatening diseases and optimizing therapeutic interventions. We herein report an all-in-one fluorescent semiconducting polymer based far-red to near-infrared (NIR) Pdot nanoprobe for the ratiometric detection of hypochlorous acid (HOCl). The fabrication takes the advantage of flexible polymer design by incorporating target-sensitive and target-inert fluorophores into a single conjugated polymer to avoid leakage or differential photobleaching problems existed in other nanoprobes. The obtained nanoprobe has improved performance in HOCl sensing, such as high brightness, ideal far-red to NIR optical window, excellent photostability, self-referenced ratiometric response, fast response, and high selectivity. The dual-emission property allows the sensitive imaging of HOCl fluctuations produced in living macrophage cells and peritonitis of living mice with high contrast. This study not only provides a powerful and promising nanoprobe to be potentially used in the investigations of in situ HOCl status of diseases in living systems but also puts forward the design strategy of a new category of ratiometric fluorescent probes facilitating precise and reliable measurement in biological systems.


Asunto(s)
Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Estructura Molecular , Procesos Fotoquímicos
5.
Gastroenterology ; 150(7): 1545-1557.e2, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27072672

RESUMEN

The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted.


Asunto(s)
Adenoma/fisiopatología , Carcinoma Ductal Pancreático/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Presión , Microambiente Tumoral , Adenoma/patología , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/patología , Células del Estroma/patología
6.
Biophys J ; 110(9): 2106-19, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166818

RESUMEN

Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.


Asunto(s)
Adenocarcinoma/patología , Líquido Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Animales , Líquido Extracelular/efectos de los fármacos , Ácido Hialurónico/farmacología , Presión Hidrostática , Ratones , Células 3T3 NIH , Neoplasias Pancreáticas/metabolismo , Viscosidad
7.
Nat Methods ; 9(8): 825-7, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22751201

RESUMEN

Emerging questions in cell biology necessitate nanoscale imaging in live cells. Here we present scanning angle interference microscopy, which is capable of localizing fluorescent objects with nanoscale precision along the optical axis in motile cellular structures. We use this approach to resolve nanotopographical features of the cell membrane and cytoskeleton as well as the temporal evolution, three-dimensional architecture and nanoscale dynamics of focal adhesion complexes.


Asunto(s)
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Epiteliales/citología , Microscopía de Interferencia/métodos , Nanotecnología/métodos , Células Cultivadas , Fibronectinas/metabolismo , Adhesiones Focales , Humanos
8.
Sci Adv ; 9(24): eade6624, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315132

RESUMEN

DNA damage repair (DDR) is a double-edged sword with different roles in cancer susceptibility and drug resistance. Recent studies suggest that DDR inhibitors affect immune surveillance. However, this phenomenon is poorly understood. We report that methyltransferase SMYD2 plays an essential role in nonhomologous end joining repair (NHEJ), driving tumor cells adaptive to radiotherapy. Mechanically, in response to DNA damage, SMYD2 is mobilized onto chromatin and methylates Ku70 at lysine-74, lysine-516, and lysine-539, leading to increased recruitment of Ku70/Ku80/DNA-PKcs complex. Knockdown of SMYD2 or its inhibitor AZ505 results in persistent DNA damage and improper repair, which sequentially leads to accumulation of cytosolic DNA, and activation of cGAS-STING pathway and triggers antitumor immunity via infiltration and activation of cytotoxic CD8+ T cells. Our study reveals an unidentified role of SMYD2 in regulating NHEJ pathway and innate immune responses, suggesting that SMYD2 is a promising therapeutic target for cancer treatment.


Asunto(s)
Linfocitos T CD8-positivos , Reparación del ADN por Unión de Extremidades , N-Metiltransferasa de Histona-Lisina , Autoantígeno Ku , Cromatina , Lisina , Autoantígeno Ku/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo
9.
Clin Cancer Res ; 29(18): 3813-3825, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37389981

RESUMEN

PURPOSE: Cancer drug development is currently limited by a paradigm of preclinical evaluation that does not adequately recapitulate the complexity of the intact human tumor microenvironment (TME). To overcome this, we combined trackable intratumor microdosing (CIVO) with spatial biology readouts to directly assess drug effects in patient tumors in situ. EXPERIMENTAL DESIGN: In a first-of-its-kind phase 0 clinical trial, we explored the effects of an investigational stage SUMOylation-activating enzyme (SAE) inhibitor, subasumstat (TAK-981) in 12 patients with head and neck carcinoma (HNC). Patients scheduled for tumor resection received percutaneous intratumor injections of subasumstat and vehicle control 1 to 4 days before surgery, resulting in spatially localized and graded regions of drug exposure (∼1,000-2,000 µm in diameter). Drug-exposed (n = 214) and unexposed regions (n = 140) were compared by GeoMx Digital Spatial Profiler, with evaluation at single-cell resolution in a subset of these by CosMx Spatial Molecular Imager. RESULTS: Localized regions of subasumstat exposure revealed SUMO pathway inhibition, elevation of type I IFN response, and inhibition of cell cycle across all tumor samples. Single-cell analysis by CosMx demonstrated cell-cycle inhibition specific to the tumor epithelium, and IFN pathway induction commensurate with a TME shift from immune-suppressive to immune-permissive. CONCLUSIONS: Pairing CIVO with spatial profiling enabled detailed investigation of response to subasumstat across a diverse sampling of native and intact TME. We demonstrate that drug mechanism of action can be directly evaluated in a spatially precise manner in the most translationally relevant setting: an in situ human tumor.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
10.
Cancer Discov ; 12(2): 484-501, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34548310

RESUMEN

Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSC), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression in vivo. Contrary to expectations, we found that PSCs give rise to a numerically minor subset of PDAC CAFs. Targeted ablation of PSC-derived CAFs within their host tissue revealed nonredundant functions for this defined CAF population in shaping the PDAC microenvironment, including production of specific extracellular matrix components and tissue stiffness regulation. Together, these findings link stromal evolution from distinct cells of origin to transcriptional heterogeneity among PDAC CAFs and demonstrate unique functions for CAFs of a defined cellular origin. SIGNIFICANCE: By tracking and ablating a specific CAF population, we find that a numerically minor CAF subtype from a defined cell of origin plays unique roles in establishing the pancreatic tumor microenvironment. Together with prior studies, this work suggests that mesenchymal lineage heterogeneity and signaling gradients diversify PDAC CAFs.See related commentary by Cukierman, p. 296.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , Neoplasias Pancreáticas/genética , Animales , Femenino , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/patología
11.
Nat Cancer ; 3(8): 945-960, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35982178

RESUMEN

Cancer-associated fibroblasts (CAFs) are one of the most prominent and active components in the pancreatic tumor microenvironment. Our data show that CAFs are critical for survival from pancreatic ductal adenocarcinoma (PDAC) on glutamine deprivation. Specifically, we uncovered a role for nucleosides, which are secreted by CAFs through autophagy in a nuclear fragile X mental retardation-interacting protein 1 (NUFIP1)-dependent manner, increased glucose utilization and promoted growth of PDAC. Moreover, we demonstrate that CAF-derived nucleosides induced glucose consumption under glutamine-deprived conditions and displayed a dependence on MYC. Using an orthotopic mouse model of PDAC, we found that inhibiting nucleoside secretion by targeting NUFIP1 in the stroma reduced tumor weight. This finding highlights a previously unappreciated metabolic network within pancreatic tumors in which diverse nutrients are used to promote growth in an austere tumor microenvironment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Autofagia , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Glucosa/farmacología , Glutamina/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Nucleósidos/metabolismo , Hormonas Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas de Unión al ARN/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Annu Rev Phys Chem ; 61: 323-44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20055682

RESUMEN

Biological systems offer more than an inspiration for the spontaneous hierarchical organization of matter at length scales between 1 and 1000 nm. They also provide useful principles and molecular building blocks that have recently emerged with the proven ability to generate extended three-dimensional structures of hybrid biotic/abiotic components arranged with molecular precision. These principles and tools draw from the methods of molecular biology and modern biochemistry and are expected to provide unmatched flexibility in building supramolecular architectures, notably structures made of artificial atoms whose coupled responses to electromagnetic or elastic excitations have been predicted to yield astonishing properties unparalleled by any conventional materials. To illustrate the potential of merging bio-enabled organization with metamaterials synthesis, we provide here a succinct overview of the architectural constraints leading to metamaterial behavior together with examples of biological material assembly that are particularly promising to comply with these constraints.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Física/instrumentación , Nanotecnología
13.
Cancers (Basel) ; 11(6)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167451

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is characterized by a pronounced fibroinflammatory stromal reaction consisting of inordinate levels of hyaluronan (HA), collagen, immune cells, and activated fibroblasts that work in concert to generate a robust physical barrier to the perfusion and diffusion of small molecule therapeutics. The targeted depletion of hyaluronan with a PEGylated recombinant human hyaluronidase (PEGPH20) lowers interstitial gel-fluid pressures and re-expands collapsed intratumoral vasculature, improving the delivery of concurrently administered agents. Here we report a non-invasive means of assessing biophysical responses to stromal intervention with quantitative multiparametric magnetic resonance imaging (MRI) at 14 Tesla (T). We found that spin-spin relaxation time T2 values and glycosaminoglycan chemical exchange saturation transfer (GagCEST) values decreased at 24 h, reflecting depletion of intratumoral HA content, and that these parameters recovered at 7 days concurrent with replenishment of intratumoral HA. This was also reflected in an increase in low-b apparent diffusion coefficient (ADC) at 24 h, consistent with improved tumor perfusion that again normalized at 7 days after treatment. Phantom imaging suggests that the GagCEST signal is driven by changes in HA versus other glycosaminoglycans. Thus, multiparametric magnetic resonance imaging (MRI) can be used as a non-invasive tool to assess therapeutic responses to targeted stromal therapy in PDA and likely other stroma-rich solid tumors that have high levels of hyaluronan and collagen.

15.
Mol Biol Cell ; 28(11): 1467-1488, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381423

RESUMEN

Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.


Asunto(s)
Adhesión Celular/fisiología , Integrinas/metabolismo , Paxillin/metabolismo , Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Metástasis de la Neoplasia/fisiopatología , Fosforilación , Transducción de Señal
16.
Cancer Cell ; 29(6): 780-782, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27300433

RESUMEN

A recent study finds that impaired TGFß signaling can initiate a positive feedback loop between increasing ECM stiffness and epithelial cell contractility in pancreas cancer. Even more surprising is the possibility that this phenotype can liberate the epithelium from dependence on the genetic events that transformed it.


Asunto(s)
Células Epiteliales/patología , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Transición Epitelial-Mesenquimal , Genotipo , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenotipo , Transducción de Señal
17.
Integr Biol (Camb) ; 8(7): 795-804, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27334548

RESUMEN

The mechanical properties of the extracellular matrix influence cell signaling to regulate key cellular processes, including differentiation, apoptosis, and transformation. Understanding the molecular mechanisms underlying mechanotransduction is contingent upon our ability to visualize the effect of altered matrix properties on the nanoscale organization of proteins involved in this signalling. The development of super-resolution imaging techniques has afforded researchers unprecedented ability to probe the organization and localization of proteins within the cell. However, most of these methods require use of substrates like glass or silicon wafers, which are artificially rigid. In light of a growing body of literature demonstrating the importance of mechanical properties of the extracellular matrix in regulating many aspects of cellular behavior and signaling, we have developed a system that allows scanning angle interference microscopy on a mechanically tunable substrate. We describe its implementation in detail and provide examples of how it may be used to aide investigations into the effect of substrate rigidity on intracellular signaling.


Asunto(s)
Adhesión Celular/efectos de la radiación , Matriz Extracelular/fisiología , Matriz Extracelular/ultraestructura , Micromanipulación/métodos , Nanopartículas/ultraestructura , Geles de Silicona/química , Línea Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Humanos , Aumento de la Imagen , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica , Microscopía de Interferencia , Resistencia al Corte , Estrés Mecánico , Resistencia a la Tracción/fisiología
18.
Nat Commun ; 7: 11468, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27118210

RESUMEN

The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a 'paintbrush' and the photoswitchable Pdots as the 'paint', we select and 'paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis.


Asunto(s)
Fluorescencia , Polímeros/química , Puntos Cuánticos , Semiconductores , Humanos , Células MCF-7 , Microscopía Confocal , Microscopía Fluorescente , Imagen Molecular/métodos
19.
Elife ; 4: e09300, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26652004

RESUMEN

Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFß signaling. We find that TGFß receptors are discretely organized to segregated spatial domains at the cell surface. Integrin-rich focal adhesions organize TßRII around TßRI, limiting the integration of TßRII while sequestering TßRI at these sites. Disruption of cellular tension leads to a collapse of this spatial organization and drives formation of heteromeric TßRI/TßRII complexes and Smad activation. This work details a novel mechanism by which cellular tension regulates TGFß receptor organization, multimerization, and function, providing new insight into the mechanisms that integrate biochemical and physical cues.


Asunto(s)
Fenómenos Químicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Propiedades de Superficie , Animales , Línea Celular , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta
20.
Cancer Res ; 74(17): 4597-611, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25183785

RESUMEN

Extracellular matrix (ECM) stiffness induces focal adhesion assembly to drive malignant transformation and tumor metastasis. Nevertheless, how force alters focal adhesions to promote tumor progression remains unclear. Here, we explored the role of the focal adhesion protein vinculin, a force-activated mechanotransducer, in mammary epithelial tissue transformation and invasion. We found that ECM stiffness stabilizes the assembly of a vinculin-talin-actin scaffolding complex that facilitates PI3K-mediated phosphatidylinositol (3,4,5)-triphosphate phosphorylation. Using defined two- and three-dimensional matrices, a mouse model of mammary tumorigenesis with vinculin mutants, and a novel super resolution imaging approach, we established that ECM stiffness, per se, promotes the malignant progression of a mammary epithelium by activating and stabilizing vinculin and enhancing Akt signaling at focal adhesions. Our studies also revealed that vinculin strongly colocalizes with activated Akt at the invasive border of human breast tumors, where the ECM is stiffest, and we detected elevated mechanosignaling. Thus, ECM stiffness could induce tumor progression by promoting the assembly of signaling scaffolds, a conclusion underscored by the significant association we observed between highly expressed focal adhesion plaque proteins and malignant transformation across multiple types of solid cancer. See all articles in this Cancer Research section, "Physics in Cancer Research."


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Adhesión Celular/fisiología , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Epitelio/metabolismo , Epitelio/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Adhesiones Focales/metabolismo , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Fosforilación/fisiología , Talina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA