Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 595(7867): 438-443, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34163071

RESUMEN

In diseased organs, stress-activated signalling cascades alter chromatin, thereby triggering maladaptive cell state transitions. Fibroblast activation is a common stress response in tissues that worsens lung, liver, kidney and heart disease, yet its mechanistic basis remains unclear1,2. Pharmacological inhibition of bromodomain and extra-terminal domain (BET) proteins alleviates cardiac dysfunction3-7, providing a tool to interrogate and modulate cardiac cell states as a potential therapeutic approach. Here we use single-cell epigenomic analyses of hearts dynamically exposed to BET inhibitors to reveal a reversible transcriptional switch that underlies the activation of fibroblasts. Resident cardiac fibroblasts demonstrated robust toggling between the quiescent and activated state in a manner directly correlating with BET inhibitor exposure and cardiac function. Single-cell chromatin accessibility revealed previously undescribed DNA elements, the accessibility of which dynamically correlated with cardiac performance. Among the most dynamic elements was an enhancer that regulated the transcription factor MEOX1, which was specifically expressed in activated fibroblasts, occupied putative regulatory elements of a broad fibrotic gene program and was required for TGFß-induced fibroblast activation. Selective CRISPR inhibition of the single most dynamic cis-element within the enhancer blocked TGFß-induced Meox1 activation. We identify MEOX1 as a central regulator of fibroblast activation associated with cardiac dysfunction and demonstrate its upregulation after activation of human lung, liver and kidney fibroblasts. The plasticity and specificity of BET-dependent regulation of MEOX1 in tissue fibroblasts provide previously unknown trans- and cis-targets for treating fibrotic disease.


Asunto(s)
Elementos de Facilitación Genéticos , Fibroblastos/citología , Cardiopatías/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Cromatina/metabolismo , Epigenómica , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas/antagonistas & inhibidores , Análisis de la Célula Individual , Transcriptoma , Factor de Crecimiento Transformador beta/metabolismo
2.
FASEB J ; 36(11): e22619, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36269280

RESUMEN

Blood-retinal barrier (BRB) breakdown is responsible for multiple ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusive diseases. Increased vascular permeability contributes to vasogenic edema and tissue damage, with consequent adverse effects on vision. Herein, we found that endothelial CYP2J2 overexpression maintained BRB integrity after ischemia-reperfusion injury and consequently protected against retinal ganglion cell loss. Oxidative stress repressed endothelial ANXA1 expression in vivo and in vitro. CYP2J2 upregulated methyltransferase-like 3 (METTL3) expression and hence promoted ANXA1 translation via ANXA1 m6 A modification in endothelium under oxidative stress. CYP2J2 maintained the distribution of endothelial tight junctions and adherens junctions in an ANXA1-dependent manner. Endothelial ANXA1 plays an indispensable role in vascular homeostasis and stabilization during development. Endothelial ANXA1 deletion disrupted retinal vascular perfusion as well as BRB integrity. CYP2J2 metabolites restored BRB integrity in the presence of ANXA1. Our findings identified the CYP2J2-METTL3-ANXA1 pathway as a potential therapeutic target for relieving BRB impairments.


Asunto(s)
Barrera Hematorretinal , Citocromo P-450 CYP2J2 , Enfermedades de la Retina , Humanos , Anexina A1/genética , Anexina A1/metabolismo , Barrera Hematorretinal/metabolismo , Permeabilidad Capilar , Citocromo P-450 CYP2J2/genética , Citocromo P-450 CYP2J2/metabolismo , Retinopatía Diabética/metabolismo , Endotelio/metabolismo , Metiltransferasas/metabolismo , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Regulación hacia Arriba , Animales , Ratas
3.
Development ; 146(23)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31784461

RESUMEN

Long intergenic non-coding RNAs (lincRNAs) have been implicated in gene regulation, but their requirement for development needs empirical interrogation. We computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2, which we named Handlr (Hand2-associated lincRNA), Rubie and Atcayos We genetically ablated these six lincRNAs in mouse, which suggested genomic regulatory roles for four of the cohort. However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription in the regulation of topologically associated genes. However, the individual importance of developmentally specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocardio/metabolismo , ARN Largo no Codificante/biosíntesis , Animales , Eliminación de Gen , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Ratones , Ratones Mutantes , ARN Largo no Codificante/genética
4.
Circulation ; 142(24): 2338-2355, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33094644

RESUMEN

BACKGROUND: Gene regulatory networks control tissue homeostasis and disease progression in a cell type-specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. METHODS: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. RESULTS: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b, and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. CONCLUSIONS: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.


Asunto(s)
Metabolismo Energético , Factor de Transcripción GATA4/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Animales , Metabolismo Energético/genética , Factor de Transcripción GATA4/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Células HEK293 , Homeostasis , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Proteínas Nucleares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fenotipo , Unión Proteica , Ratas Sprague-Dawley , Factores de Transcripción/genética , Transcriptoma , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda
5.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801629

RESUMEN

The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and ß1 protein content remained unchanged, and the cardiac Na/K-ATPase dose-response curve to ouabain shifted to the left as expected. In males aged 3-6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.


Asunto(s)
Glicósidos Cardíacos/química , Corazón/fisiología , Miocardio/enzimología , ATPasa Intercambiadora de Sodio-Potasio/genética , Angiotensina II/farmacología , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Ecocardiografía , Corazón/efectos de los fármacos , Masculino , Ratones , Mutación , Ouabaína/farmacología , Isoformas de Proteínas , RNA-Seq , Especies Reactivas de Oxígeno , Transducción de Señal/efectos de los fármacos
6.
FASEB J ; 33(10): 11194-11209, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295013

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide. Vascular factors play a substantial role in the pathogenesis of glaucoma. Expressed in the vascular endothelium, cytochrome P450 (CYP) 2J2 is one of the CYP epoxygenases that metabolize arachidonic acid to produce epoxyeicosatrienoic acids and exert pleiotropic protective effects on the vasculature. In the present study, we investigated whether endothelium-specific overexpression of CYP2J2 (tie2-CYP2J2-Tr) protects against retinal ganglion cell (RGC) loss induced by glaucoma and in what way retinal vessels are involved in this process. We used a glaucoma model of retinal ischemia-reperfusion (I/R) injury in rats and found that endothelium-specific overexpression of CYP2J2 attenuated RGC loss induced by retinal I/R. Moreover, retinal I/R triggered retinal vascular senescence, indicated by up-regulated senescence-related proteins p53, p16, and ß-galactosidase activity. The senescent endothelial cells resulted in pericyte loss and increased endothelial secretion of matrix metallopeptidase 9, which further contributed to RGC loss. CYP2J2 overexpression alleviated vascular senescence, pericyte loss, and matrix metallopeptidase 9 secretion. CYP2J2 suppressed endothelial senescence by down-regulating senescence-associated proteins p53 and p16. These 2 proteins were positively regulated by microRNA-128-3p, which was inhibited by CYP2J2. These results suggest that CYP2J2 protects against endothelial senescence and RGC loss in glaucoma, a discovery that may lead to the development of a potential treatment strategy for glaucoma.-Huang, J., Zhao, Q., Li, M., Duan, Q., Zhao, Y., Zhang, H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.


Asunto(s)
Apoptosis/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Endotelio Vascular/metabolismo , Glaucoma/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Senescencia Celular/fisiología , Citocromo P-450 CYP2J2 , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Glaucoma/patología , Metaloendopeptidasas/metabolismo , MicroARNs/metabolismo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Células Ganglionares de la Retina/patología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/fisiología
7.
J Cardiovasc Pharmacol ; 71(2): 95-103, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29419572

RESUMEN

Ouabain preconditioning (OPC) initiated by low concentrations of the cardiac glycoside (CG) ouabain binding to Na/K-ATPase is relayed by a unique intracellular signaling and protects cardiac myocytes against ischemia/reperfusion injury. To explore more clinically applicable protocols based on CG properties, we tested whether the FDA-approved CG digoxin could trigger cardioprotective effects comparable with those of ouabain using PC, preconditioning and PostC, postconditioning protocols in the Langendorff-perfused mouse heart subjected to global ischemia and reperfusion. Ouabain or digoxin at 10 µmol/L inhibited Na/K-ATPase activity by approximately 30% and activated PKCε translocation by approximately 50%. Digoxin-induced PC (DigPC), initiated by a transient exposure before 40 minutes of ischemia, was as effective as OPC as suggested by the recovery of left ventricular developed pressure, end-diastolic pressure, and cardiac Na/K-ATPase activity after 30 minutes of reperfusion. DigPC also significantly decreased lactate dehydrogenase release and reduced infarct size, comparable with OPC. PostC protocols consisting of a single bolus injection of 100 nmoles of ouabain or digoxin in the coronary tree at the beginning of reperfusion both improved significantly the recovery of left ventricular developed pressure and decreased lactate dehydrogenase release, demonstrating a functional and structural protection comparable with the one provided by OPC. Given the unique signaling triggered by OPC, these results suggest that DigPostC could be considered for patients with risk factors and/or concurrent treatments that may limit effectiveness of ischemic PostC.


Asunto(s)
Cardiotónicos/administración & dosificación , Digoxina/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Ouabaína/administración & dosificación , Función Ventricular Izquierda/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteína Quinasa C-epsilon/metabolismo , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Presión Ventricular/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 112(49): E6780-9, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598680

RESUMEN

Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.


Asunto(s)
Glucocorticoides/farmacología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Femenino , Glucocorticoides/uso terapéutico , Humanos , Factores de Transcripción de Tipo Kruppel/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiopatología , Proteínas Nucleares/fisiología , Receptores de Glucocorticoides/fisiología
9.
Am J Physiol Cell Physiol ; 312(3): C222-C232, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27903584

RESUMEN

The Na/K-ATPase α1 polypeptide supports both ion-pumping and signaling functions. The Na/K-ATPase α3 polypeptide differs from α1 in both its primary structure and its tissue distribution. The expression of α3 seems particularly important in neurons, and recent clinical evidence supports a unique role of this isoform in normal brain function. The nature of this specific role of α3 has remained elusive, because the ubiquitous presence of α1 has hindered efforts to characterize α3-specific functions in mammalian cell systems. Using Na/K-ATPase α1 knockdown pig kidney cells (PY-17), we generated the first stable mammalian cell line expressing a ouabain-resistant form of rat Na/K-ATPase α3 in the absence of endogenous pig α1 detectable by Western blotting. In these cells, Na/K-ATPase α3 formed a functional ion-pumping enzyme and rescued the expression of Na/K-ATPase ß1 and caveolin-1 to levels comparable with those observed in PY-17 cells rescued with a rat Na/K-ATPase α1 (AAC-19). The α3-containing enzymes had lower Na+ affinity and lower ouabain-sensitive transport activity than their α1-containing counterparts under basal conditions, but showed a greater capacity to be activated when intracellular Na+ was increased. In contrast to Na/K-ATPase α1, α3 could not regulate Src. Upon exposure to ouabain, Src activation did not occur, yet ERK was activated through Src-independent pathways involving PI3K and PKC. Hence, α3 expression confers signaling and pumping properties that are clearly distinct from that of cells expressing Na/K-ATPase α1.


Asunto(s)
Activación del Canal Iónico/fisiología , Riñón/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Células Madre/enzimología , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Proliferación Celular/fisiología , Riñón/citología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas
10.
J Mol Cell Cardiol ; 80: 114-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575882

RESUMEN

Acute myocardial infarction, the clinical manifestation of ischemia-reperfusion (IR) injury, is a leading cause of death worldwide. Like ischemic preconditioning (IPC) induced by brief episodes of ischemia and reperfusion, ouabain preconditioning (OPC) mediated by Na/K-ATPase signaling protects the heart against IR injury. Class I PI3K activation is required for IPC, but its role in OPC has not been investigated. While PI3K-IB is critical to IPC, studies have suggested that ouabain signaling is PI3K-IA-specific. Hence, a pharmacological approach was used to test the hypothesis that OPC and IPC rely on distinct PI3K-I isoforms. In Langendorff-perfused mouse hearts, OPC was initiated by 4 min of ouabain 10 µM and IPC was triggered by 4 cycles of 5 min ischemia and reperfusion prior to 40 min of global ischemia and 30 min of reperfusion. Without affecting PI3K-IB, ouabain doubled PI3K-IA activity and Akt phosphorylation at Ser(473). IPC and OPC significantly preserved cardiac contractile function and tissue viability as evidenced by left ventricular developed pressure and end-diastolic pressure recovery, reduced lactate dehydrogenase release, and decreased infarct size. OPC protection was blunted by the PI3K-IA inhibitor PI-103, but not by the PI3K-IB inhibitor AS-604850. In contrast, IPC-mediated protection was not affected by PI-103 but was blocked by AS-604850, suggesting that PI3K-IA activation is required for OPC while PI3K-IB activation is needed for IPC. Mechanistically, PI3K-IA activity is required for ouabain-induced Akt activation but not PKCε translocation. However, in contrast to PKCε translocation which is critical to protection, Akt activity was not required for OPC. Further studies shall reveal the identity of the downstream targets of this new PI3K IA-dependent branch of OPC. These findings may be of clinical relevance in patients at risk for myocardial infarction with underlying diseases and/or medication that could differentially affect the integrity of cardiac PI3K-IA and IB pathways.


Asunto(s)
Cardiotónicos/farmacología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Ouabaína/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Cromonas/farmacología , Activación Enzimática , Furanos/farmacología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Isoenzimas , Masculino , Ratones , Morfolinas/farmacología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos
11.
Biochim Biophys Acta ; 1842(9): 1518-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24925129

RESUMEN

In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cilios/fisiología , Enfermedades Renales Poliquísticas/patología , Canales Catiónicos TRPP/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Verapamilo/farmacología , Pez Cebra
12.
J Biol Chem ; 288(19): 13295-304, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23532853

RESUMEN

BACKGROUND: It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. RESULTS: Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. CONCLUSION: A420P mutant has normal pumping but not signaling function. SIGNIFICANCE: Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.


Asunto(s)
Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/genética , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Caveolina 1/metabolismo , Línea Celular , Proliferación Celular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Ouabaína/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Ratas , Radioisótopos de Rubidio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/química
13.
J Biol Chem ; 288(8): 5803-14, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23288841

RESUMEN

The α1 Na/K-ATPase possesses both pumping and signaling functions. Using purified enzyme we found that the α1 Na/K-ATPase might interact with and regulate Src activity in a conformation-dependent manner. Here we further explored the importance of the conformational transition capability of α1 Na/K-ATPase in regulation of Src-related signal transduction in cell culture. We first rescued the α1-knockdown cells by wild-type rat α1 or α1 mutants (I279A and F286A) that are known to be defective in conformational transition. Stable cell lines with comparable expression of wild type α1, I279A, and F286A were characterized. As expected, the defects in conformation transition resulted in comparable degree of inhibition of pumping activity in the mutant-rescued cell lines. However, I279A was more effective in inhibiting basal Src activity than either the wild-type or the F286A. Although much higher ouabain concentration was required to stimulate Src in I279A-rescued cells, extracellular K(+) was comparably effective in regulating Src in both control and I279A cells. In contrast, ouabain and extracellular K(+) failed to produce detectable changes in Src activity in F286A-rescued cells. Furthermore, expression of either mutant inhibited integrin-induced activation of Src/FAK pathways and slowed cell spreading processes. Finally, the expression of these mutants inhibited cell growth, with I279A being more potent than that of F286A. Taken together, the new findings suggest that the α1 Na/K-ATPase may be a key player in dynamic regulation of cellular Src activity and that the capability of normal conformation transition is essential for both pumping and signaling functions of α1 Na/K-ATPase.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio/genética , Familia-src Quinasas/metabolismo , Animales , Transporte Biológico , Biotinilación , Caveolina 1/metabolismo , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Células LLC-PK1 , Ligandos , Microscopía Confocal/métodos , Mutagénesis Sitio-Dirigida , Mutación , Ouabaína/farmacología , Conformación Proteica , Ratas , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estreptavidina/química , Porcinos , Factores de Tiempo
14.
Am J Physiol Heart Circ Physiol ; 304(1): H94-103, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23086991

RESUMEN

Na(+),K(+)-ATPase and cell survival were investigated in a cellular model of ischemia-reperfusion (I/R)-induced injury and protection by ouabain-induced preconditioning (OPC). Rat neonatal cardiac myocytes were subjected to 30 min of substrate and coverslip-induced ischemia followed by 30 min of simulated reperfusion. This significantly compromised cell viability as documented by lactate dehydrogenase release and Annexin V/propidium iodide staining. Total Na(+),K(+)-ATPase α(1)- and α(3)-polypeptide expression remained unchanged, but cell surface biotinylation and immunostaining studies revealed that α(1)-cell surface abundance was significantly decreased. Na(+),K(+)-ATPase-activity in crude homogenates and (86)Rb(+) transport in live cells were both significantly decreased by about 30% after I/R. OPC, induced by a 4-min exposure to 10 µM ouabain that ended 8 min before the beginning of ischemia, increased cell viability in a PKCε-dependent manner. This was comparable with the protective effect of OPC previously reported in intact heart preparations. OPC prevented I/R-induced decrease of Na(+),K(+)-ATPase activity and surface expression. This model also revealed that Na(+),K(+)-ATPase-mediated (86)Rb(+) uptake was not restored to control levels in the OPC group, suggesting that the increased viability was not conferred by an increased Na(+),K(+)-ATPase-mediated ion transport capacity at the cell membrane. Consistent with this observation, transient expression of an internalization-resistant mutant form of Na(+),K(+)-ATPase α(1) known to have increased surface abundance without increased ion transport activity successfully reduced I/R-induced cell death. These results suggest that maintenance of Na(+),K(+)-ATPase cell surface abundance is critical to myocyte survival after an ischemic attack and plays a role in OPC-induced protection. They further suggest that the protection conferred by increased surface expression of Na(+),K(+)-ATPase may be independent of ion transport.


Asunto(s)
Membrana Celular/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Ouabaína/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inmunohistoquímica , Transporte Iónico , L-Lactato Deshidrogenasa/metabolismo , Mutación , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Proteína Quinasa C-epsilon/metabolismo , Transporte de Proteínas , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Tiempo , Transfección
15.
J Colloid Interface Sci ; 642: 193-203, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37004254

RESUMEN

Compared with other anode materials, Li metal anode has higher capacity density and lower electrode potential, which has been considered as one of the most promising anode materials. However, the unstable solid electrolyte interface (SEI) leads to Li dendrite growth and the infinite volumetric expansion of Li metal, which seriously hinders the stability and cycle life of Li metal batteries (LMBs). Here, a polyurethane elastomer (TPU) material with high elasticity and air stability is used as the artificial SEI of Li metal anode. Its designed synergistic effect of soft chain forging and hard chain segments not only gives TPU artificial SEI layer good electronic insulation, Li ion conductivity, Li dendrite growth inhibition, high elastic modulus and flexibility to adapt to Li volume expansion, but also has a significant air protection effect on the Li metal surface, so that the TPU coated Li foil will not occur obvious oxidation phenomenon after being placed in air for 45 min. The Li symmetric battery modified by TPU achieved a stable and long-term cycle performance of 1300 h at 1 mA/cm2, it can also cycle stably at a high current density of 10 mA/cm2. The Coulomb efficiency of the modified Li/Cu half-cell maintains at above 97% after 400 cycles. In addition, the full cell with LiFePO4 cathode also delivers a very excellent long cycle stability with 90% capacity retention after 1500 cycles at 5 C. This surface modification strategy of SEI on lithium anode has has great research value and will help to improve the widely application of LMBs.

16.
J Anim Sci Biotechnol ; 13(1): 30, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236420

RESUMEN

BACKGROUND: Sialyllactose (SL) is one of the most abundant oligosaccharides present in porcine breast milk. However, little is known about its effect on growth performance and intestinal health in weaned pigs. This study was conducted to explore the protective effect of SL on intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli (ETEC) challenge. METHODS: Thirty-two pigs were randomly divided into four treatments. Pigs fed with a basal diet or basal diet containing SL (5.0 g/kg) were orally infused with ETEC or culture medium. RESULTS: SL supplementation elevated the average daily gain (ADG) and feed efficiency in the ETEC-challenged pigs (P < 0.05). SL also improved the digestibilities of dry matter (DM), gross energy (GE), and ash in non-challenged pigs (P < 0.05). Moreover, SL not only elevated serum concentrations of immunoglobulins (IgA, IgG, and IgM), but also significantly decreased the serum concentrations of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) upon ETEC challenge (P < 0.05). Interestingly, SL increased the villus height, the ratio of villus height to crypt depth (V:C), and the activities of mucosal sucrase and maltase in the jejunum and ileum (P < 0.05). SL also elevated the concentrations of microbial metabolites (e.g. acetic acid, propanoic acid, and butyric acid) and the abundance of Lactobacillus, Bifidobacterium, and Bacillus in the cecum (P < 0.05). Importantly, SL significantly elevated the expression levels of jejunal zonula occludins-1 (ZO-1), occluding, and fatty acid transport protein-4 (FATP4) in the ETEC-challenged pigs (P < 0.05). CONCLUSIONS: SL can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.

17.
Food Funct ; 13(22): 11627-11637, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36269305

RESUMEN

Sialyllactose (SL), one of the most abundant oligosaccharides present in porcine breast milk, has been implicated in many biological functions, including the prebiotic and immune-modulating effects. This study was conducted to investigate the influences of dietary SL supplementation on intestinal barrier functions exposure to enterotoxigenic Escherichia coli (ETEC) in a porcine model. Thirty-two pigs were assigned to four treatments, fed with basal or SL-containing (5.0 g kg-1) diet, and orally infused with ETEC or culture medium. SL supplementation significantly reduced the diarrhea incidence and the abundance of E. coli in feces (P < 0.05). Interestingly, SL attenuated ETEC-induced intestinal epithelium injury as indicated by the decreased serum concentrations of diamine oxidase (DAO) and D-lactate and reduced the number of apoptotic cells in the jejunal epithelium (P < 0.05). Moreover, SL not only elevated the abundance of the tight-junction protein ZO-1 in the duodenal and ileal epithelium but also elevated the antioxidant capacity and the number of SIgA positive cells in the jejunal epithelium upon the ETEC challenge (P < 0.05). Importantly, SL decreased the expression levels of inflammation-related genes such as the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differentiation factor 88 (MyD88) in the duodenum, and ileum upon ETEC challenge (P < 0.05). SL also significantly elevated the expression levels of two critical antioxidant genes such as the nuclear factor erythroid-2 related factor 2 (Nrf-2) and kelch-like ECH-associated protein 1 (KEAP-1) in the jejunum (P < 0.05). These results suggested that SL can alleviate ETEC-induced intestinal epithelium injury, which is associated with suppressed inflammation, improved intestinal immunity, antioxidant capacity, and improved intestinal epithelial functions.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Porcinos , Animales , Antioxidantes/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Mucosa Intestinal/metabolismo , Inflamación/metabolismo
18.
Sci Adv ; 8(10): eabj2917, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263131

RESUMEN

Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6, which encodes corticosteroid-binding globulin (CBG). Klf15-deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf153xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6, where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.

19.
Nat Commun ; 13(1): 4345, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896549

RESUMEN

Heart failure with reduced ejection fraction (HFrEF) is associated with high mortality, highlighting an urgent need for new therapeutic strategies. As stress-activated cardiac signaling cascades converge on the nucleus to drive maladaptive gene programs, interdicting pathological transcription is a conceptually attractive approach for HFrEF therapy. Here, we demonstrate that CDK7/12/13 are critical regulators of transcription activation in the heart that can be pharmacologically inhibited to improve HFrEF. CDK7/12/13 inhibition using the first-in-class inhibitor THZ1 or RNAi blocks stress-induced transcription and pathologic hypertrophy in cultured rodent cardiomyocytes. THZ1 potently attenuates adverse cardiac remodeling and HFrEF pathogenesis in mice and blocks cardinal features of disease in human iPSC-derived cardiomyocytes. THZ1 suppresses Pol II enrichment at stress-transactivated cardiac genes and inhibits a specific pathologic gene program in the failing mouse heart. These data identify CDK7/12/13 as druggable regulators of cardiac gene transactivation during disease-related stress, suggesting that HFrEF features a critical dependency on transcription that can be therapeutically exploited.


Asunto(s)
Quinasas Ciclina-Dependientes , Insuficiencia Cardíaca , Animales , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Humanos , Ratones , ARN Polimerasa II , Volumen Sistólico
20.
Cell Death Dis ; 12(12): 1149, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34897284

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive optic nerve degeneration and retinal ganglion cell loss. Axonal transport deficits have been demonstrated to be the earliest crucial pathophysiological changes underlying axonal degeneration in glaucoma. Here, we explored the role of the tetraspanin superfamily member CD82 in an acute ocular hypertension model. We found a transient downregulation of CD82 after acute IOP elevation, with parallel emergence of axonal transport deficits. The overexpression of CD82 with an AAV2/9 vector in the mouse retina improved optic nerve axonal transport and ameliorated subsequent axon degeneration. Moreover, the CD82 overexpression stimulated optic nerve regeneration and restored vision in a mouse optic nerve crush model. CD82 exerted a protective effect through the upregulation of TRAF2, which is an E3 ubiquitin ligase, and activated mTORC1 through K63-linked ubiquitylation and intracellular repositioning of Raptor. Therefore, our study offers deeper insight into the tetraspanin superfamily and demonstrates a potential neuroprotective strategy in glaucoma treatment.


Asunto(s)
Transporte Axonal , Glaucoma , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Presión Intraocular , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Células Ganglionares de la Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA