Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Respir Res ; 24(1): 111, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061730

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the main type of the most common malignant tumor in the world. Previous studies have shown that the expression level of mitochondrial creatine kinase 1 (CKMT1) is abnormal in NSCLC, but the mechanism of its effect remains unclear. Therefore, in this study, we intend to clarify the potential mechanism of CKMT1 in NSCLC and provide the theoretical basis for the clinical application of CKMT1. METHODS: The function of CKMT1 in NSCLC was identified by analyzing the GEO dataset and evaluating using in vitro and in vivo models. Protein mass spectrometry was used to find proteins interacting with CKMT1, and Co-immunoprecipitation (Co-IP) and GST-pull down experiments were used to verify the interaction between proteins. The immunofluorescence (IF) assay was used to explore the functional position of CKMT1 in cells. The effect of CKMT1 expression level on the efficacy of paclitaxel (TAX) in the treatment of NSCLC was analyzed by a combined TAX experiment in vivo and in vitro. RESULTS: CKMT1 expression was increased in NSCLC and CKMT1 promoted the proliferation of NSCLC cells in vitro and in vivo. CKMT1 knockdown resulted in a significantly increased G0/G1 fraction and decreased S phase cell fraction, indicating G1 phase arrest. Mechanically, the cyclin-dependent kinase 4 (CDK4) was identified to interact with CKMT1, and the crucial binding areas were focused on the DH domain of CKMT1 and the N- and C-terminal of CDK4. A fraction of the CDK4 proteins colocalize and interact with the CKMT1 at mitochondria, the level of phosphorylated CDK4 was regulated by CKMT1. Hence, the decrease in CKMT1 expression level could increase the antitumor effect of G2/M cell cycle antagonist-TAX in NSCLC in vitro and in vivo. CONCLUSIONS: CKMT1 could interact with CDK4 in mitochondria and regulate the phosphorylated level of CDK4, thus contributing to the proliferation and cell cycle transition of NSCLC cells. And CKMT1 could be a potential target to improve the sensitivity of chemotherapy based on TAX.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Forma Mitocondrial de la Creatina-Quinasa , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
2.
Biochem Pharmacol ; 211: 115498, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36913990

RESUMEN

Despite the use of targeted therapy in non-small cell lung cancer (NSCLC) patients, cisplatin (DDP)-based chemotherapy is still the main option. However, DDP resistance is the major factor contributing to the failure of chemotherapy. In this study, we tried to screen DDP sensitizers from an FDA-approved drug library containing 1374 small-molecule drugs to overcome DDP resistance in NSCLC. As a result, disulfiram (DSF) was identified as a DDP sensitizer: DSF and DDP had synergistic anti-NSCLC effects, which are mainly reflected in inhibiting tumor cell proliferation, plate colony formation and 3D spheroidogenesis and inducing apoptosis in vitro, as well as the growth of NSCLC xenografts in mice. Although DSF has recently been reported to promote the antitumor effect of DDP by inhibiting ALDH activity or modulating some important factors or pathways, unexpectedly, we found that DSF reacted with DDP to form a new platinum chelate, Pt(DDTC)3+, which might be one of the important mechanisms for their synergistic effect. Moreover, Pt(DDTC)3+ has a stronger anti-NSCLC effect than DDP, and its antitumor activity is broad-spectrum. These findings reveal a novel mechanism underlying the synergistic antitumor effect of DDP and DSF, and provide a drug candidate or a lead compound for the development of a new antitumor drug.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Cisplatino/farmacología , Cisplatino/metabolismo , Disulfiram/farmacología , Platino (Metal)/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Proliferación Celular , Resistencia a Antineoplásicos , Línea Celular Tumoral
3.
Front Cell Dev Biol ; 9: 643525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249905

RESUMEN

Tumor growth and metastasis are responsible for breast cancer-related mortality. Andrographolide (Andro) is a traditional anti-inflammatory drug used in the clinic that inhibits NF-κB activation. Recently, Andro has been found in the treatment of various cancers. Andro inhibits breast cell proliferation and invasion and induces apoptosis via activating various signaling pathways. Therefore, the underlying mechanisms with regard to the antitumor effects of Andro still need to be further confirmed. Herein, a MMTV-PyMT spontaneous luminal-like breast cancer lung metastatic transgenic tumor model was employed to estimate the antitumor effects of Andro on breast cancer in vivo. Andro significantly inhibited tumor growth and metastasis in MMTV-PyMT mice and suppressed the cell proliferation, migration, and invasion of MCF-7 breast cancer cells in vitro. Meanwhile, Andro significantly inhibited the expression of NF-κB, and the downregulated NF-κB reduced miR-21-5p expression. In addition, miR-21-5p dramatically inhibited the target gene expression of programmed cell death protein 4 (PDCD4). In the current study, we demonstrated the potential anticancer effects of Andro on luminal-like breast cancer and indicated that Andro inhibits the expression of miR-21-5p and further promotes PDCD4 via NF-κB suppression. Therefore, Andro could be an antitumor agent for the treatment of luminal-like breast cancer in the clinic.

4.
Liver Cancer ; 9(3): 338-357, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32647635

RESUMEN

BACKGROUND AND AIMS: Combining anti-angiogenic therapy with immune checkpoint blockade with anti-programmed cell death-1 (PD-1) antibodies is a promising treatment for hepatocellular carcinoma (HCC). Tyrosine kinase inhibitors are well-known anti-angiogenic agents and offer potential for combination with anti-PD-1 antibodies. This study investigated the possible underlying immunomodulatory mechanisms of combined therapy. METHODS: HCC tissue samples for RNA-sequencing (RNA-seq) were obtained from patients with differential prognoses following anti-PD-1 treatment. Recombinant basic fibroblast growth factor (bFGF) and vascular endothelial growth factor A (VEGFA) were used to stimulate T cells following lenvatinib or sorafenib treatment, respectively. T cell function was analyzed by flow cytometry and lactate dehydrogenase assay. In vivo experiments were conducted in murine H22 and Hepa 1-6 competent models of HCC. Local immune infiltration in the tumor microenvironment (TME) was assessed using multicolor flow cytometry. Gene regulation was evaluated by RNA-seq. Microvascular density was measured by immunohistochemistry, and PD-1 ligand (PD-L1) induction was quantified by western blot. RESULTS: The baseline expression of VEGF and fibroblast growth factor (FGF) in patients with progressive disease was significantly higher than in patients achieving stable disease following anti-PD-1 treatment. VEGFA and bFGF significantly upregulated the expression of PD-1, cytotoxic T-lymphocyte-associated protein-4, and Tim-3 on T cells, while inhibiting the secretion of interferon gamma (IFNG) and granzyme B and suppressing T cell cytotoxicity. This immunosuppressive effect was reverted by lenvatinib but not sorafenib. Furthermore, dual lenvatinib/anti-PD-1 antibody therapy led to better antitumor effects than either sorafenib or fibroblast growth factor receptor (FGFR) inhibitor (BGJ398) in H22 murine models of HCC. Combined lenvatinib/anti-PD-1 treatment also led to long-term immune memory formation, while synergistically modulating the TME and enhancing the cytotoxic effect of T cells. Finally, lenvatinib inhibited PD-L1 expression on human umbilical vein endothelial cells, which improved the function of T cells. CONCLUSIONS: Inhibition of vascular endothelial growth factor receptor and FGFR augmented the efficacy of anti-PD-1 antibodies. Combined lenvatinib/anti-PD-1 treatment appears to exert antitumor activity by synergistically modulating effector T cell function in the TME and by mutually regulating tumor vessel normalization.

5.
Int J Biol Sci ; 13(5): 660-668, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28539838

RESUMEN

Angiogenesis provides nutrients and oxygen to promote tumor growth and affords a channel that facilitates tumor cell entry into the circulation. Andrographolide (Andro) possess anti-tumor activity; however, its direct effect on angiogenesis still needs to be clarified. In this study, our experiments revealed that Andro significantly inhibited vascular growth in chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumor angiogenesis was also suppressed by Andro. Additionally, we found that cell proliferation, migration and tube formation of vascular endothelial cells was inhibited by Andro treatment in vitro. The effect was primarily mediated through inhibition of miR-21-5p expression and further targeting of TIMP3. This work provides evidence that Andro directly inhibits angiogenesis and might be an effective anti-angiogenic therapeutic drug for cancer treatment.


Asunto(s)
Diterpenos/farmacología , MicroARNs/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Int J Biol Sci ; 13(4): 471-479, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529455

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, accounting for approximately 12-24% of breast cancer cases. Accumulating evidence has indicated that there is no effective targeted therapy available for TNBC. Dipalmitoylphosphatidic acid (DPPA) is a bioactive phospholipid. However, the function of DPPA in the growth of TNBC has not yet been studied. In this study, we employed TNBC cells and a subcutaneous tumor model to elucidate the possible effect of DPPA on tumor growth in TNBC. We showed that DPPA significantly inhibited tumor growth in the mouse subcutaneous tumor model and suppressed cell proliferation and angiogenesis in TNBC tumor tissues. This inhibition was mediated partly by suppressing the expression of cyclin B1 (CCNB1), which directly promoted the accumulation of cells in the G2 phase and arrested cell cycle progression in human TNBC. In addition, the inhibition of tumor growth by DPPA may also be mediated by the suppression of tumor angiogenesis in TNBC. This work provides initial evidence that DPPA might be vital as an anti-tumor drug to treat TNBC.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos Fosfatidicos/farmacología , Ácidos Fosfatidicos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Femenino , Citometría de Flujo , Fase G2/efectos de los fármacos , Fase G2/genética , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA