Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38877650

RESUMEN

Polar environments pose extreme challenges for life due to low temperatures, limited water, high radiation, and frozen landscapes. Despite these harsh conditions, numerous macro and microorganisms have developed adaptive strategies to reduce the detrimental effects of extreme cold. A primary survival tactic involves avoiding or tolerating intra and extracellular freezing. Many organisms achieve this by maintaining a supercooled state by producing small organic compounds like sugars, glycerol, and amino acids, or through increasing solute concentration. Another approach is the synthesis of ice-binding proteins, specifically antifreeze proteins (AFPs), which hinder ice crystal growth below the melting point. This adaptation is crucial for preventing intracellular ice formation, which could be lethal, and ensuring the presence of liquid water around cells. AFPs have independently evolved in different species, exhibiting distinct thermal hysteresis and ice structuring properties. Beyond their ecological role, AFPs have garnered significant attention in biotechnology for potential applications in the food, agriculture, and pharmaceutical industries. This review aims to offer a thorough insight into the activity and impacts of AFPs on water, examining their significance in cold-adapted organisms, and exploring the diversity of microbial AFPs. Using a meta-analysis from cultivation-based and cultivation-independent data, we evaluate the correlation between AFP-producing microorganisms and cold environments. We also explore small and large-scale biotechnological applications of AFPs, providing a perspective for future research.


Asunto(s)
Proteínas Anticongelantes , Bacterias , Biotecnología , Proteínas Anticongelantes/metabolismo , Bacterias/metabolismo , Congelación , Hielo , Frío , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Microb Ecol ; 81(4): 954-964, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33392629

RESUMEN

Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.


Asunto(s)
Metano , Microbiota , Brasil , ADN , Isótopos , Oxidación-Reducción , Filogenia , Microbiología del Suelo
3.
Appl Microbiol Biotechnol ; 105(9): 3521-3532, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33900423

RESUMEN

Ultraviolet radiation, continuously reaching our planet's surface, is a type of electromagnetic energy within the wavelength range of 10 to 400 nm. Despite essential for all life on Earth, ultraviolet radiation may have severe adverse cellular effects, including DNA dimerization and production of reactive oxygen species. Radioresistant microorganisms can survive under high doses of ultraviolet radiation, enduring the direct and indirect effects on nucleic acids and other biomolecules. The synthesis and accumulation of photoprotective compounds are among the main strategies employed by radioresistant yeast species to bear the harmful effects of ultraviolet radiation. A correlation between pigments and resistance to ultraviolet radiation has been widely recognized in these microorganisms; however, there is still some debate on this topic, with non-pigmented strains sometimes being more resistant than their pigmented counterparts. In this review, we explore the role of photoprotective compounds-specifically, melanin, carotenoids, and mycosporines-and compare the differences found in resistance between pigmented and non-pigmented yeasts. We also discuss the biotechnological potential of these photoprotective compounds, with special emphasis on those produced by non-pigmented yeast strains, such as phytoene and phytofluene. The use of "-omics" approaches should further unveil the radioresistance mechanisms of non-pigmented yeasts, opening new opportunities for both research and commercial applications. KEY POINTS: • Updated knowledge on photoprotective compounds from radioresistant yeasts. • Differences on radioresistance between pigmented and non-pigmented yeasts. • Future prospects over the study of non-pigmented photoprotective compounds.


Asunto(s)
Rayos Ultravioleta , Levaduras , Melaninas , Pigmentación
4.
Antonie Van Leeuwenhoek ; 113(5): 707-717, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31950303

RESUMEN

Here we investigated the diversity of bacterial communities from deep-sea surface sediments under influence of asphalt seeps at the Sao Paulo Plateau using next-generation sequencing method. Sampling was performed at North São Paulo Plateau using the human occupied vehicle Shinkai 6500 and her support vessel Yokosuka. The microbial diversity was studied at two surficial sediment layers (0-1 and 1-4 cm) of five samples collected in cores in water depths ranging from 2456 to 2728 m. Bacterial communities were studied through sequencing of 16S rRNA gene on the Ion Torrent platform and clustered in operational taxonomic units. We observed high diversity of bacterial sediment communities as previously described by other studies. When we considered community composition, the most abundant classes were Alphaproteobacteria (27.7%), Acidimicrobiia (20%), Gammaproteobacteria (11.3%) and Deltaproteobacteria (6.6%). Most abundant OTUs at family level were from two uncultured bacteria from Actinomarinales (5.95%) and Kiloniellaceae (3.17%). The unexpected high abundance of Alphaproteobacteria and Acidimicrobiia in our deep-sea microbial communities may be related to the presence of asphalt seep at North São Paulo Plateau, since these bacterial classes contain bacteria that possess the capability of metabolizing hydrocarbon compounds.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Metagenoma , Microbiota/genética , Agua de Mar/microbiología , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hidrocarburos/metabolismo , Metagenómica/métodos , ARN Ribosómico 16S/genética , Microbiología del Agua
5.
Curr Genomics ; 21(4): 240-252, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33071618

RESUMEN

Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.

6.
Mol Biol Rep ; 46(5): 5309-5321, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31346912

RESUMEN

A microbial community was enriched in the anoxic compartment of a pilot-scale bioreactor that was operated for 180 days, fed with sewage and designed for organic matter, nitrogen and sulfide removal by coupling anaerobic digestion, nitrification and mixotrophic denitrification. Denitrification occurred with endogenous electron donors, mainly sulfide and residual organic matter, coming from the anaerobic compartment. The microorganisms involved in denitrification with sulfide as electron donor were identified by DNA-stable isotope probing with [U-13C]-labelled CO2 and NaHCO3. Complete denitrification occurred every two days, and the applied NO3-/S2- ratio was 1.6. Bacteria belonging to the Sulfurimonas denitrificans was identified as a chemoautotrophic denitrifier, and those related to Georgfuchisa toluolica, Geothrix fermentans and Ferritrophicum radicicola were most probably associated with heterotrophic denitrification using endogenous cells and/or intermediate metabolites. This study showed that DNA-SIP was a suitable technique to identify the active microbiota involved in sulfide-driven denitrification in a complex environment, which may contribute to improve design and operation of bioreactors aiming for carbon-nitrogen-sulfur removal.


Asunto(s)
Reactores Biológicos/microbiología , Desnitrificación/fisiología , Sulfuros/metabolismo , Acidobacteria/genética , Bacterias/genética , Técnicas de Cultivo Celular por Lotes/métodos , Betaproteobacteria/genética , Helicobacteraceae/genética , Marcaje Isotópico/métodos , Isótopos , Nitratos , Nitrógeno/metabolismo , Aguas del Alcantarillado , Sulfuros/química
7.
Bioprocess Biosyst Eng ; 39(2): 341-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26638967

RESUMEN

A pilot-scale reactor treating domestic sewage was operated to promote anaerobic digestion and denitrification using endogenous electron donors. While 55 % of organic matter was removed, nitrogen and sulfur showed a different dynamics during the operation. Pyrosequencing analysis clarified this behavior revealing that specific microbial communities inhabited the anaerobic (47.05 % of OTUs) and anoxic (31.39 % of OTUs) chambers. Analysis of 16S rRNA gene partial sequences obtained through pyrosequencing revealed a total of 1727 OTUs clustered at a 3 % distance cutoff. In the anaerobic chamber, microbial community was comprised of fermentative, syntrophic and sulfate-reducing bacteria. The majority of sequences were related to Aminobacterium and Syntrophorhabdus. In the anoxic chamber, the majority of sequences were related to mixotrophic and strictly autotrophic denitrifiers Arcobacter and Sulfuricurvum, respectively, both involved in sulfur-driven denitrification. These results show that pyrosequencing was a powerful tool to investigate the microbial panorama of a complex system, providing new insights to the improvement of the system.


Asunto(s)
Bacterias/crecimiento & desarrollo , Desnitrificación/fisiología , Consorcios Microbianos/fisiología , Aguas del Alcantarillado/microbiología , Azufre/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
8.
Braz J Microbiol ; 55(2): 1251-1263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492163

RESUMEN

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.


Asunto(s)
Antiparasitarios , Pigmentos Biológicos , Regiones Antárticas , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/biosíntesis , Antiparasitarios/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Hongos/clasificación , Microbiología del Suelo , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Pruebas de Sensibilidad Microbiana , Animales , Staphylococcus aureus/efectos de los fármacos
9.
Braz J Microbiol ; 54(3): 1675-1687, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37286926

RESUMEN

The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.


Asunto(s)
Biotecnología , Hongos , Regiones Antárticas
10.
Braz J Microbiol ; 52(3): 1557-1563, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33891284

RESUMEN

Several Lactobacillus ssp. are recognized as potential conjugated linoleic acid (CLA) producers. We have previously reported the ability of a range of Lactobacillus delbrueckii subsp. bulgaricus strains to produce CLA in fermented milk, being a potential candidate for the fermented dairy food chain. This study reports the draft genome sequence of L. bulgaricus strain LBP UFSC 2230, isolated from Italian Grana Padano cheese. Draft genome sequence originated in a total of 4,310,842 paired-end reads that were quality trimmed and assembled into 135 contigs with a total length of 604,745,873 bp, including 2086 protein coding genes and an average GC content of 49.7%. Draft genome sequence represents an important tool to identify the enzymes involved in this strain's CLA metabolism. We identified a gene encoding an enzyme involved in biohydrogenation of linoleic acid pathway, oleate hydratase.


Asunto(s)
Queso , Genoma Bacteriano , Lactobacillus delbrueckii , Ácidos Linoleicos Conjugados , Queso/microbiología , Italia , Lactobacillus delbrueckii/genética , Ácidos Linoleicos Conjugados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA