Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445292

RESUMEN

Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.


Asunto(s)
Células-Madre Neurales , Animales , Mitocondrias , Respiración , Drosophila , Encéfalo , Mamíferos
2.
PLoS Genet ; 18(2): e1010055, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157701

RESUMEN

Optimal mitochondrial function determined by mitochondrial dynamics, morphology and activity is coupled to stem cell differentiation and organism development. However, the mechanisms of interaction of signaling pathways with mitochondrial morphology and activity are not completely understood. We assessed the role of mitochondrial fusion and fission in the differentiation of neural stem cells called neuroblasts (NB) in the Drosophila brain. Depleting mitochondrial inner membrane fusion protein Opa1 and mitochondrial outer membrane fusion protein Marf in the Drosophila type II NB lineage led to mitochondrial fragmentation and loss of activity. Opa1 and Marf depletion did not affect the numbers of type II NBs but led to a decrease in differentiated progeny. Opa1 depletion decreased the mature intermediate precursor cells (INPs), ganglion mother cells (GMCs) and neurons by the decreased proliferation of the type II NBs and mature INPs. Marf depletion led to a decrease in neurons by a depletion of proliferation of GMCs. On the contrary, loss of mitochondrial fission protein Drp1 led to mitochondrial clustering but did not show defects in differentiation. Depletion of Drp1 along with Opa1 or Marf also led to mitochondrial clustering and suppressed the loss of mitochondrial activity and defects in proliferation and differentiation in the type II NB lineage. Opa1 depletion led to decreased Notch signaling in the type II NB lineage. Further, Notch signaling depletion via the canonical pathway showed mitochondrial fragmentation and loss of differentiation similar to Opa1 depletion. An increase in Notch signaling showed mitochondrial clustering similar to Drp1 mutants. Further, Drp1 mutant overexpression combined with Notch depletion showed mitochondrial fusion and drove differentiation in the lineage, suggesting that fused mitochondria can influence differentiation in the type II NB lineage. Our results implicate crosstalk between proliferation, Notch signaling, mitochondrial activity and fusion as an essential step in differentiation in the type II NB lineage.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células-Madre Neurales/metabolismo
3.
Bioinorg Chem Appl ; 2018: 4924186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057593

RESUMEN

Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.

4.
Sci Rep ; 7(1): 5502, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710464

RESUMEN

Mitochondria are inherited maternally as globular and immature organelles in metazoan embryos. We have used the Drosophila blastoderm embryo to characterize their morphology, distribution and functions in embryogenesis. We find that mitochondria are relatively small, dispersed and distinctly distributed along the apico-basal axis in proximity to microtubules by motor protein transport. Live imaging, photobleaching and photoactivation analyses of mitochondrially targeted GFP show that they are mobile in the apico-basal axis along microtubules and are immobile in the lateral plane thereby associating with one syncytial cell. Photoactivated mitochondria distribute equally to daughter cells across the division cycles. ATP depletion by pharmacological and genetic inhibition of the mitochondrial electron transport chain (ETC) activates AMPK and decreases syncytial metaphase furrow extension. In summary, we show that small and dispersed mitochondria of the Drosophila blastoderm embryo localize by microtubule transport and provide ATP locally for the fast syncytial division cycles. Our study opens the possibility of use of Drosophila embryogenesis as a model system to study the impact of maternal mutations in mitochondrial morphology and metabolism on embryo patterning and differentiation.


Asunto(s)
Blastodermo/citología , Drosophila/embriología , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ciclo Celular , Drosophila/citología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA