Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nano Lett ; 21(24): 10525-10531, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874734

RESUMEN

Colloidal semiconductor nanoplatelets exhibit strong quantum confinement for electrons and holes as well as excitons in one dimension, while their in-plane motion is free. Because of the large dielectric contrast between the semiconductor and its ligand environment, the Coulomb interaction between electrons and holes is strongly enhanced. By means of one- and two-photon photoluminescence excitation spectroscopy, we measure the energies of the 1S and 1P exciton states in CdSe nanoplatelets with thicknesses varied from 3 up to 7 monolayers. By comparison with calculations, performed in the effective mass approximation with account of the dielectric enhancement, we evaluate exciton binding energies of 195-315 meV, which is about 20 times greater than that in bulk CdSe. Our calculations of the effective Coulomb potential for very thin nanoplatelets are close to the Rytova-Keldysh model, and the exciton binding energies are comparable with the values reported for monolayer-thick transition metal dichalcogenides.

2.
Inorg Chem ; 60(4): 2271-2278, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33502849

RESUMEN

The role of indium carboxylate precursors in the synthesis of monodisperse InP quantum dots was investigated. The reaction between acid-free indium palmitate and tris(trimethylsilyl)phosphine (P(TMS)3) was monitored by using high-temperature 31P NMR, indicating the presence of a single molecular phosphorus species throughout the duration of the reaction. The addition of varying amounts of carboxylic acid and its effects on both the reaction kinetics and the optical properties of InP QDs were studied. In the presence of acid, rapid protonation of P(TMS)3 led to the formation of a mixture of four HxP(TMS)3-x species, resulting in the poorer controlled formation of InP nanocrystals. Upon deposition of a gradated ZnSeS shell on the synthesized InP core, luminescent quantum dots were obtained (QY 67%; PL: FWHM 40 nm).

3.
Nano Lett ; 20(1): 517-525, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31825228

RESUMEN

CdSe colloidal nanoplatelets are studied by spin-flip Raman scattering in magnetic fields up to 5 T. We find pronounced Raman lines shifted from the excitation laser energy by an electron Zeeman splitting. Their polarization selection rules correspond to those expected for scattering mediated by excitons interacting with resident electrons. Surprisingly, Raman signals shifted by twice the electron Zeeman splitting are also observed. The theoretical analysis and experimental dependences show that the mechanism responsible for the double flip involves two resident electrons interacting with a photoexcited exciton. Effects related to various orientations of the nanoplatelets in the ensemble and different orientations of the magnetic field are analyzed.

4.
Nano Lett ; 20(2): 1370-1377, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31960677

RESUMEN

The low-temperature emission spectrum of CdSe colloidal nanoplatelets (NPLs) consists of two narrow lines. The high-energy line stems from the recombination of neutral excitons. The origin of the low-energy line is currently debated. We experimentally study the spectral shift, emission dynamics, and spin polarization of both lines at low temperatures down to 1.5 K and in high magnetic fields up to 60 T and show that the low-energy line originates from the recombination of negatively charged excitons (trions). This assignment is confirmed by the NPL photocharging dynamics and associated variations in the spectrum. We show that the negatively charged excitons are considerably less sensitive to the presence of surface spins than the neutral excitons. The trion binding energy in three-monolayer-thick NPLs is as large as 30 meV, which is 4 times larger than its value in the two-dimensional limit of a conventional CdSe quantum well confined between semiconductor barriers. A considerable part of this enhancement is gained by the dielectric enhancement effect, which is due to the small dielectric constant of the environment surrounding the NPLs.

5.
Nano Lett ; 18(6): 3441-3448, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29722262

RESUMEN

Colloidal nanoplatelets (NPLs), owing to their efficient and narrow-band luminescence, are considered as promising candidates for solution-processable light-emitting diodes (LEDs) with ultrahigh color purity. To date, however, the record efficiencies of NPL-LEDs are significantly lower than those of more-investigated devices based on spherical nanocrystals. This is particularly true for red-emitting NPL-LEDs, the best-reported external quantum efficiency (EQE) of which is limited to 0.63% (EQE = 5% for green NPL-LEDs). Here, we address this issue by introducing a charge-regulating layer of a polar and polyelectrolytic polymer specifically engineered with complementary trimethylammonium and phosphonate functionalities that provide high solubility in orthogonal polar media with respect to the NPL active layer, compatibility with the metal cathode, and the ability to control electron injection through the formation of a polarized interface under bias. Through this synergic approach, we achieve EQE = 5.73% at 658 nm (color saturation 98%) in completely solution processed LEDs. Remarkably, exposure to air increases the EQE to 8.39%, exceeding the best reports of red NPL-LEDs by over 1 order of magnitude and setting a new global record for quantum-dot LEDs of any color embedding solution-deposited organic interlayers. Considering the emission quantum yield of the NPLs (40 ± 5%), this value corresponds to a near-unity internal quantum efficiency. Notably, our devices show exceptional operational stability for over 5 h of continuous drive in air with no encapsulation, thus confirming the potential of NPLs for efficient, high-stability, saturated LEDs.

6.
Nano Lett ; 18(7): 4590-4597, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29812951

RESUMEN

The use of intraband transition is an interesting alternative path for the design of optically active complex colloidal materials in the mid-infrared range. However, so far, the performance obtained for photodetection based on intraband transition remains much smaller than the one relying on interband transition in narrow-band-gap materials operating at the same wavelength. New strategies have to be developed to make intraband materials more effective. Here, we propose growing a heterostructure of HgSe/HgTe as a means of achieving enhanced intraband-based photoconduction. We first tackle the synthetic challenge of growing a heterostructure on soft (Hg-based) material. The electronic spectrum of the grown heterostructure is then investigated using a combination of numerical simulation, infrared spectroscopy, transport measurement, and photoemission. We report a type-II band alignment with reduced doping compared with a core-only object and boosted hole conduction. Finally, we probe the photoconductive properties of the heterostructure while resonantly exciting the intraband transition by using a high-power-density quantum cascade laser. Compared to the previous generation of material based on core-only HgSe, the heterostructures have a lower dark current, stronger temperature dependence, faster photoresponse (with a time response below 50 µs), and detectivity increased by a factor of 30.

7.
Nano Lett ; 18(1): 373-380, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29160075

RESUMEN

We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured, and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble.

8.
J Am Chem Soc ; 140(15): 5033-5036, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29617124

RESUMEN

We report the synthesis of nanocrystals with an optical feature in the THz range. To do so, we develop a new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm. This is used to tune the absorption of the nanocrystals all over the infrared range up to terahertz (from 2 to 65 µm for absorption peak and even 200 µm for cutoff wavelength). The interest for this procedure is not limited to large sizes since for small objects we demonstrate low aggregation and good shape control (i.e., spherical object) while using nonexpansive and simple mercury halogenide precursors. By integrating these nanocrystals into an electrolyte-gated transistor, we evidence a change of carrier density from p-doped to n-doped as the confinement is vanishing.

9.
Langmuir ; 34(46): 13828-13836, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30372080

RESUMEN

In the past few years, core-shell nanoparticles have opened new perspectives for the optoelectronic applications of semiconductor quantum dots. In particular, it has become possible to localize electrons in either part of these heterostructures. Understanding and controlling this phenomenon require a thorough characterization of the interfaces. In this study, we prepared quasi-2D CdSeS/ZnS core-shell nanoplatelets (NPLs) by colloidal atomic layer deposition. This technique allows fine control over the quantum confinement, the surfaces, and the interfaces. The layer-by-layer formation of a the ZnS shell around the CdSeS core was monitored using UV-vis absorption, XRD, and Raman spectroscopy. The measured band gaps and structural distortions were compared with results obtained from density functional theory (DFT) calculations. Modeling has also shown that 34% of the photoexcited electrons are delocalized into the ZnS shell. The herein presented combined modeling and experimental characterization strategy is of general interest since it can be applied to a large choice of layered semiconductor heterostructures in optoelectronics. The present approach paves the way for the synthesis of nanocrystals with precisely engineered properties for light-emitting diodes and solar cells.

10.
Chem Rev ; 116(18): 10934-82, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27434678

RESUMEN

In this paper, we review recent progress on colloidal growth of 2D nanocrystals. We identify the four main sources of anisotropy which lead to the formation of plate- and sheet-like colloidal nanomaterials. Defect-induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nano-objects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. Two-dimensional objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown transition metal dichalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology.

11.
Nano Lett ; 17(7): 4067-4074, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28598629

RESUMEN

We investigate the electronic and transport properties of HgTe 2D colloidal quantum wells. We demonstrate that the material can be made p- or n-type depending on the capping ligands. In addition to the control of majority carrier type, the surface chemistry also strongly affects the photoconductivity of the material. These transport measurements are correlated with the electronic structure determined by high resolution X-ray photoemission. We attribute the change of majority carriers to the strong hybridization of an n-doped HgS layer resulting from capping the HgTe nanoplatelets by S2- ions. We further investigate the gate and temperature dependence of the photoresponse and its dynamics. We show that the photocurrent rise and fall times can be tuned from 100 µs to 1 ms using the gate bias. Finally, we use time-resolved photoemission spectroscopy as a probe of the transport relaxation to determine if the observed dynamics are limited by a fundamental process such as trapping. These pump probe surface photovoltage measurements show an even faster relaxation in the 100-500 ns range, which suggests that the current performances are rather limited by geometrical factors.

12.
Nano Lett ; 16(2): 1282-6, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26753599

RESUMEN

Infrared thermal imaging devices rely on narrow band gap semiconductors grown by physical methods such as molecular beam epitaxy and chemical vapor deposition. These technologies are expensive, and infrared detectors remain limited to defense and scientific applications. Colloidal quantum dots (QDs) offer a low cost alternative to infrared detector by combining inexpensive synthesis and an ease of processing, but their performances are so far limited, in terms of both wavelength and sensitivity. Herein we propose a new generation of colloidal QD-based photodetectors, which demonstrate detectivity improved by 2 orders of magnitude, and optical absorption that can be continuously tuned between 3 and 20 µm. These photodetectors are based on the novel synthesis of n-doped HgSe colloidal QDs whose size can be tuned continuously between 5 and 40 nm, and on their assembly into solid nanocrystal films with mobilities that can reach up to 100 cm(2) V(-1) s(-1). These devices can be operated at room temperature with the same level of performance as the previous generation of devices when operated at liquid nitrogen temperature. HgSe QDs can be synthesized in large scale (>10 g per batch), and we show that HgSe films can be processed to form a large scale array of pixels. Taken together, these results pave the way for the development of the next generation mid- and far-infrared low-cost detectors and camera.

13.
Nano Lett ; 16(3): 2047-53, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26863992

RESUMEN

Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds. The excited state dynamics are found to be dominated by the slow (∼µs) dynamics of temporary exciton storage in a charge-separated state, previously overlooked. We study the processes of charge carrier separation and exciton recovery in pure CdSe nanoplatelets as well as in core-crown and core-shell CdSe/CdS nanoplatelets with high ensemble quantum yields of 50%, and discuss the implications. Our work highlights the importance of reversible charge carrier trapping and experiments over a wide range of time scales for the understanding of colloidal nanoemitters in general and nanoplatelets in particular.

14.
Acc Chem Res ; 48(1): 22-30, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25554861

RESUMEN

CONSPECTUS: Semiconductors are at the basis of electronics. Up to now, most devices that contain semiconductors use materials obtained from a top down approach with semiconductors grown by molecular beam epitaxy or chemical vapor deposition. Colloidal semiconductor nanoparticles have been synthesized for more than 30 years now, and their synthesis is becoming mature enough that these nanoparticles have started to be incorporated into devices. An important development that recently took place in the field of colloidal quantum dots is the synthesis of two-dimensional (2D) semiconductor nanoplatelets that appear as free-standing nanosheets. These 2D colloidal systems are the newborn in the family of shaped-controlled nanoparticles that started with spheres, was extended with rods and wires, continued with tetrapods, and now ends with platelets. From a physical point of view, these objects bring 1D-confined particles into the colloidal family. It is a notable addition, since these platelets can have a thickness that is controlled with atomic precision, so that no inhomogeneous broadening is observed. Because they have two large free interfaces, mirror charges play an important role, and the binding energy of the exciton is extremely large. These two effects almost perfectly compensate each other, it results in particles with unique spectroscopic properties such as fast fluorescent lifetimes and extreme color purity (narrow full width at half-maximum of their emission spectra). These nanoplatelets with extremely large confinement but very simple and well-defined chemistry are model systems to check and further develop, notably with the incorporation in the models of the organic/inorganic interface, various theoretical approaches used for colloidal particles. From a chemical point of view, these colloidal particles are a model system to study the role of ligands since they have precisely defined facets. In addition, the synthesis of these highly anisotropic objects triggered new research to understand at a mechanistic level how this strong anisotropy could be generated. Luckily, some of the chemical know-how built with the spherical and rod-shaped particles is being transferred, with some adaptation, to 2D systems, so that 2D core/shell and core/crown heterostructures have recently been introduced. These objects are very interesting because they suggest that multiple quantum wells could be grown in solution. From the application point of view, 2D colloidal nanoplatelets offer interesting perspectives when color purity, charge conductivity, or field tunable absorption are required. In this Account, we review the chemical synthesis, the physical properties, and the applications of colloidal semiconductor nanoplatelets with an emphasis on the zinc-blende nanoplatelets that were developed more specifically in our group.

15.
Phys Chem Chem Phys ; 18(22): 15295-303, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27211113

RESUMEN

Cadmium chalcogenide nanoplatelet (NPL) synthesis has recently witnessed a significant advance in the production of more elaborate structures such as core/shell and core/crown NPLs. However, controlled doping in these structures has proved difficult because of the restrictive synthetic conditions required for 2D anisotropic growth. Here, we explore the incorporation of tellurium (Te) within CdSe NPLs with Te concentrations ranging from doping to alloying. For Te concentrations higher than ∼30%, the CdSexTe(1-x) NPLs show emission properties characteristic of an alloyed material with a bowing of the band gap for increased concentrations of Te. This behavior is in line with observations in bulk samples and can be put in the context of the transition from a pure material to an alloy. In the dilute doping regime, CdSe:Te NPLs, in comparison to CdSe NPLs, show a distinct photoluminescence (PL) red shift and prolonged emission lifetimes (LTs) associated with Te hole traps which are much deeper than in bulk samples. Furthermore, single particle spectroscopy reveals dramatic modifications in PL properties. In particular, doped NPLs exhibit photon antibunching and emission dynamics significantly modified compared to undoped or alloyed NPLs.

16.
Nano Lett ; 15(6): 3953-8, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25990468

RESUMEN

Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation.


Asunto(s)
Compuestos de Cadmio/química , Fluorescencia , Puntos Cuánticos/química , Compuestos de Selenio/química , Sulfuros/química
17.
Nano Lett ; 15(3): 1736-42, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25650627

RESUMEN

Interparticle charge hopping severely limits the integration of colloidal nanocrystals films for optoelectronic device applications. We propose here to overcome this problem by using high aspect ratio interconnects made of wide electrodes separated by a few tens of namometers, a distance matching the size of a single nanoplatelet. The semiconducting CdSe/CdS nanoplatelet coupling with such electrodes allows an efficient electron-hole pair dissociation despite the large binding energy of the exciton, resulting in optimal photoconductance responsivity. We report the highest responsivity obtained so far for CdSe colloidal material with values reaching kA·W(-1), corresponding to eight decades of enhancement compared to usual micrometer-scaled architectures. In addition, a decrease of 1 order of magnitude of the current noise is observed, revealing the reduced influence of the surface traps on transport. The nanotrench geometry provides top access to ion gel electrolyte gating, allowing for a photoresponsive transistor with 10(4) on/off ratio. A simple analytical model reproduces the device behavior and underlines the key parameters related to its performance.

18.
Nano Lett ; 15(4): 2620-6, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25815414

RESUMEN

Understanding the formation mechanism of colloidal nanocrystals is of paramount importance in order to design new nanostructures and synthesize them in a predictive fashion. However, reliable data on the pathways leading from molecular precursors to nanocrystals are not available yet. We used synchrotron-based time-resolved in situ small and wide-angle X-ray scattering to experimentally monitor the formation of CdSe quantum dots synthesized in solution through the heating up of precursors in octadecene at 240 °C. Our experiment yields a complete movie of the structure of the solution from the self-assembly of the precursors to the formation of the quantum dots. We show that the initial cadmium precursor lamellar structure melts into small micelles at 100 °C and that the first CdSe nuclei appear at 218.7 °C. The size distributions and concentration in nanocrystals are measured in a quantitative fashion as a function of time. We show that a short nucleation burst lasting 30 s is followed by a slow decrease of nanoparticle concentration. The rate-limiting process of the quantum dot formation is found to be the thermal activation of selenium.


Asunto(s)
Cristalización/métodos , Ensayo de Materiales/métodos , Técnicas de Sonda Molecular , Puntos Cuánticos , Difracción de Rayos X/métodos , Sistemas de Computación , Calor , Dispersión del Ángulo Pequeño , Soluciones/química
19.
Nano Lett ; 15(2): 1252-8, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25607231

RESUMEN

The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

20.
Bioconjug Chem ; 26(8): 1582-9, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25992903

RESUMEN

A novel method for covalent conjugation of DNA to polymer coated quantum dots (QDs) is investigated in detail. This method is fast and efficient: up to 12 DNA strands can be covalently conjugated per QD in optimized reaction conditions. The QD-DNA conjugates can be purified using size exclusion chromatography and the QDs retain high quantum yield and excellent stability after DNA coupling. We explored single-stranded and double-stranded DNA coupling, as well as various lengths. We show that the DNA coupling is most efficient for short (15 mer) single-stranded DNA. The DNA coupling has been performed on QDs emitting at four different wavelengths, as well as on gold nanoparticles, suggesting that this technique can be generalized to a wide range of nanoparticles.


Asunto(s)
Coloides/química , ADN/química , Oro/química , Nanopartículas del Metal/química , Puntos Cuánticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA