Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31826996

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of three human malignancies: Kaposi's sarcoma, primary effusion lymphoma, and the plasma cell variant of multicentric Castleman disease. Previous research has shown that several cellular tyrosine kinases play crucial roles during several steps in the virus replication cycle. Two KSHV proteins also have protein kinase function: open reading frame (ORF) 36 encodes a serine-threonine kinase, while ORF21 encodes a thymidine kinase (TK), which has recently been found to be an efficient tyrosine kinase. In this study, we explore the role of the ORF21 tyrosine kinase function in KSHV lytic replication. By generating a recombinant KSHV mutant with an enzymatically inactive ORF21 protein, we show that the tyrosine kinase function of ORF21/TK is not required for the progression of the lytic replication in tissue culture but that it is essential for the phosphorylation and activation to toxic moieties of the antiviral drugs zidovudine and brivudine. In addition, we identify several tyrosine kinase inhibitors, already in clinical use against human malignancies, which potently inhibit not only ORF21 TK kinase function but also viral lytic reactivation and the development of KSHV-infected endothelial tumors in mice. Since they target both cellular tyrosine kinases and a viral kinase, some of these compounds might find a use in the treatment of KSHV-associated malignancies.IMPORTANCE Our findings address the role of KSHV ORF21 as a tyrosine kinase during lytic replication and the activation of prodrugs in KSHV-infected cells. We also show the potential of selected clinically approved tyrosine kinase inhibitors to inhibit KSHV TK, KSHV lytic replication, infectious virion release, and the development of an endothelial tumor. Since they target both cellular tyrosine kinases supporting productive viral replication and a viral kinase, these drugs, which are already approved for clinical use, may be suitable for repurposing for the treatment of KSHV-related tumors in AIDS patients or transplant recipients.


Asunto(s)
Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/metabolismo , Sistemas de Lectura Abierta , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Latencia del Virus/efectos de los fármacos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Células HEK293 , Herpesvirus Humano 8/enzimología , Herpesvirus Humano 8/genética , Humanos , Ratones , Mutación , Sistemas de Lectura Abierta/genética , Proteínas Tirosina Quinasas/genética , Sarcoma de Kaposi/virología , Células Vero , Latencia del Virus/fisiología , Replicación Viral
2.
Cell Mol Life Sci ; 74(7): 1319-1333, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27853834

RESUMEN

Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell-cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi's sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Línea Celular , Proliferación Celular , Regulación hacia Abajo , Endoglina/genética , Endoglina/metabolismo , Células Endoteliales/trasplante , Perfilación de la Expresión Génica , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Microscopía Fluorescente , Óxido Nítrico/metabolismo , Sarcoma de Kaposi/etiología , Regulación hacia Arriba
3.
J Mol Med (Berl) ; 99(3): 425-438, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484281

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus and the etiological agent of an endothelial tumor (Kaposi's sarcoma) and two B cell proliferative diseases (primary effusion lymphoma and multicentric Castleman's disease). While in patients with late stage of Kaposi's sarcoma the majority of spindle cells are KSHV-infected, viral copies are rapidly lost in vitro, both upon culture of tumor-derived cells or from newly infected endothelial cells. We addressed this discrepancy by investigating a KSHV-infected endothelial cell line in various culture conditions and in tumors of xenografted mice. We show that, in contrast to two-dimensional endothelial cell cultures, KSHV genomes are maintained under 3D cell culture conditions and in vivo. Additionally, an increased rate of newly infected cells was detected in 3D cell culture. Furthermore, we show that the PI3K/Akt/mTOR and ATM/γH2AX pathways are modulated and support an improved KSHV persistence in 3D cell culture. These mechanisms may contribute to the persistence of KSHV in tumor tissue in vivo and provide a novel target for KS specific therapeutic interventions. KEY MESSAGES: In vivo maintenance of episomal KSHV can be mimicked in 3D spheroid cultures 3D maintenance of KSHV is associated with an increased de novo infection frequency PI3K/Akt/mTOR and ATM/ γH2AX pathways contribute to viral maintenance.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Células Endoteliales/virología , Herpesvirus Humano 8/fisiología , Cultivo de Virus/métodos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , División Celular/efectos de los fármacos , Línea Celular , Línea Celular Transformada , Doxiciclina/farmacología , Células Endoteliales/citología , Genoma Viral , Xenoinjertos , Histonas/fisiología , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/fisiología , Plásmidos , Proteínas Proto-Oncogénicas c-akt/fisiología , Sarcoma de Kaposi/virología , Transducción de Señal/fisiología , Esferoides Celulares/trasplante , Esferoides Celulares/virología , Serina-Treonina Quinasas TOR/fisiología , Latencia del Virus , Liberación del Virus , Replicación Viral
4.
J Control Release ; 294: 327-336, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30586597

RESUMEN

Targeted delivery of drugs is a major challenge in treatment of diverse diseases. Systemically administered drugs demand high doses and are accompanied by poor selectivity and side effects on non-target cells. Here, we introduce a new principle for targeted drug delivery. It is based on macrophages as transporters for nanoparticle-coupled drugs as well as controlled release of drugs by hyperthermia mediated disruption of the cargo cells and simultaneous deliberation of nanoparticle-linked drugs. Hyperthermia is induced by an alternating electromagnetic field (AMF) that induces heat from silica-coated superparamagnetic iron oxide nanoparticles (SPIONs). We show proof-of-principle of controlled release by the simultaneous disruption of the cargo cells and the controlled, AMF induced release of a toxin, which was covalently linked to silica-coated SPIONs via a thermo-sensitive linker. Cells that had not been loaded with SPIONs remain unaffected. Moreover, in a 3D co-culture model we demonstrate specific killing of associated tumour cells when employing a ratio as low as 1:40 (SPION-loaded macrophage: tumour cells). Overall, our results demonstrate that AMF induced drug release from macrophage-entrapped nanoparticles is tightly controlled and may be an attractive novel strategy for targeted drug release.


Asunto(s)
Sistemas de Liberación de Medicamentos , Compuestos Férricos/administración & dosificación , Hipertermia Inducida , Macrófagos , Maitansina/administración & dosificación , Nanopartículas/administración & dosificación , Dióxido de Silicio/administración & dosificación , Animales , Línea Celular , Técnicas de Cocultivo , Preparaciones de Acción Retardada/administración & dosificación , Liberación de Fármacos , Compuestos Férricos/química , Humanos , Fenómenos Magnéticos , Ratones , Modelos Biológicos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Dióxido de Silicio/química
5.
J Mol Med (Berl) ; 97(3): 311-324, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610257

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), a tumor of endothelial origin predominantly affecting immunosuppressed individuals. Up to date, vaccines and targeted therapies are not available. Screening and identification of anti-viral compounds are compromised by the lack of scalable cell culture systems reflecting properties of virus-transformed cells in patients. Further, the strict specificity of the virus for humans limits the development of in vivo models. In this study, we exploited a conditionally immortalized human endothelial cell line for establishment of in vitro 2D and 3D KSHV latency models and the generation of KS-like xenograft tumors in mice. Importantly, the invasive properties and tumor formation could be completely reverted by purging KSHV from the cells, confirming that tumor formation is dependent on the continued presence of KSHV, rather than being a consequence of irreversible transformation of the infected cells. Upon testing a library of 260 natural metabolites, we selected the compounds that induced viral loss or reduced the invasiveness of infected cells in 2D and 3D endothelial cell culture systems. The efficacy of selected compounds against KSHV-induced tumor formation was verified in the xenograft model. Together, this study shows that the combined use of anti-viral and anti-tumor assays based on the same cell line is predictive for tumor reduction in vivo and therefore allows faithful selection of novel drug candidates against Kaposi's sarcoma. KEY MESSAGES: Novel 2D, 3D, and xenograft mouse models mimic the consequences of KSHV infection. KSHV-induced tumorigenesis can be reverted upon purging the cells from the virus. A 3D invasiveness assay is predictive for tumor reduction in vivo. Chondramid B, epothilone B, and pretubulysin D diminish KS-like lesions in vivo.


Asunto(s)
Antivirales/farmacología , Células Endoteliales/virología , Herpesvirus Humano 8/efectos de los fármacos , Animales , Línea Celular , Humanos , Ratones Noqueados , Sarcoma de Kaposi/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA