Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(3): 1418-1425, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35015531

RESUMEN

The preparation of defect-free MFI crystals containing single-site framework Mo through a hydrothermal postsynthesis treatment is reported. The insertion of single Mo sites in the MFI zeolite samples with different crystal sizes of 100, 200, and 2000 nm presenting a diverse concentration of silanol groups is revealed. The nature of the silanols and their role in the incorporation of Mo into the zeolite structure are elucidated through an extensive spectroscopic characterization (29Si NMR, 1H NMR, 31P NMR, and IR) combined with X-ray diffraction and HRTEM. In addition, a DFT-based theoretical modeling of a large Si154O354H92 nanoparticle containing 600 atoms is carried out to understand the expansion of the unit cell volume measured by X-ray diffraction. An accurate quantification of the silanols in the MFI crystals with different particle sizes and the insertion of Mo in the zeolitic framework is reported for the first time. The results confirmed that the non-H-bonded silanols seem to be the gateway for the insertion of single Mo atoms in the zeolite structure. Such materials with single metal sites present high crystallinity and perfect structure, thus providing great stability in catalytic applications.

2.
Angew Chem Int Ed Engl ; 59(44): 19414-19432, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32691444

RESUMEN

The development of catalysts that can operate under exceptionally harsh and unconventional conditions is of critical importance for the transition of the energy and chemicals industries to low-emission and renewable chemical feedstocks. In this review we will highlight materials and more specifically metal-containing zeolite catalysts that have been tested under harsh reaction conditions such as high temperature light alkane conversion and biomass valorization. Particular attention will be given to studies that explore the stability and recyclability of metal-containing zeolite catalysts operating in continuous modes. Metal-containing zeolites are considered as an important class of catalysts operating outside the comfort zone of current heterogeneous catalytic reactions in both gas and liquid phase reactions. The relationship between the properties of the metal-containing zeolite and catalytic performance will be explored.

3.
Angew Chem Int Ed Engl ; 59(44): 19553-19560, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32681561

RESUMEN

The current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel "top-down" synthesis approach for preparation of a single-site Mo-containing nanosized ZSM-5 zeolite which has atomically dispersed framework-molybdenum homogenously distributed through the zeolite crystals. The introduction of Mo heals most of the native point defects in the zeolite structure resulting in an extremely stable material. The important features of this single-site Mo-containing ZSM-5 zeolite are provided by an in-depth spectroscopic and microscopic analysis. The material demonstrates superior thermal (up to 1000 °C), hydrothermal (steaming), and catalytic (converting methane to hydrogen and higher hydrocarbons) stability, maintaining the atomically disperse Mo, structural integrity of the zeolite, and preventing the formation of silanols.

4.
J Am Chem Soc ; 141(22): 8689-8693, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31117550

RESUMEN

Direct evidence of the successful incorporation of atomically dispersed molybdenum (Mo) atoms into the framework of nanosized MFI zeolite is demonstrated for the first time. Homogeneous distribution of Mo with a size of 0.05 nm is observed by scanning transmission electron microscopy high-angle annular dark-field imaging (STEM-HAADF). 31P magic-angle spinning nuclear magnetic resonance (MAS NMR) and Fourier-transform infrared (FT-IR) spectroscopy, using trimethylphosphine oxide (TMPO) and deuterated acetonitrile as probe molecules, reveal a homogeneous distribution of Mo in the framework of MFI nanozeolite, and the presence of Lewis acidity. 31P MAS NMR using TMPO shows probe molecules interacting with isolated Mo atoms in the framework, and physisorbed probe molecules in the zeolite channels. Moreover, 2D 31P-31P MAS radio frequency-driven recoupling NMR indicates the presence of one type of Mo species in different crystallographic positions in the MFI framework. The substitution of framework Si by Mo significantly reduces the silanol defect content, making the resulting zeolite highly hydrophobic. In addition, the insertion of Mo into the MFI structure induces a symmetry lowering, from orthorhombic ( Pnma), typical of high silica MFI, to monoclinic ( P21/ n), as well as an expansion of unit cell volume. The novel material opens many opportunities of catalysts design for application in mature and emerging fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA