Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharm ; 20(9): 4629-4639, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37552575

RESUMEN

One of the most aggressive forms of breast cancer involves the overexpression of human epidermal growth factor receptor 2 (HER2). HER2 is overexpressed in ∼25% of all breast cancers and is associated with increased proliferation, increased rates of metastasis, and poor prognosis. Treatment for HER2-positive breast cancer has vastly improved since the development of the monoclonal antibody trastuzumab (Herceptin) as well as other biological constructs. However, patients still commonly develop resistance, illustrating the need for newer therapies. Nanobodies have become an important focus for potential development as HER2-targeting imaging agents and therapeutics. Nanobodies have many favorable characteristics, including high stability in heat and nonphysiological pH, while maintaining their low-nanomolar affinity for their designed targets. Specifically, the 2Rs15d nanobody has been developed for targeting HER2 and has been evaluated as a diagnostic imaging agent for single-photon emission computed tomography (SPECT) and positron emission tomography (PET). While a construct of 2Rs15d with the positron emitter 68Ga is currently in phase I clinical trials, the only PET images acquired in preclinical or clinical research have been within 3 h postinjection. We evaluated our in-house produced 2Rs15d nanobody, conjugated with the chelator deferoxamine (DFO), and radiolabeled with 89Zr for PET imaging up to 72 h postinjection. [89Zr]Zr-DFO-2Rs15d demonstrated high stability in both phosphate-buffered saline (PBS) and human serum. Cell binding studies showed high binding and specificity for HER2, as well as prominent internalization. Our in vivo PET imaging confirmed high-quality visualization of HER2-positive tumors up to 72 h postinjection, whereas HER2-negative tumors were not visualized. Subsequent biodistribution studies quantitatively supported the significant HER2-positive tumor uptake compared to the negative control. Our studies fill an important gap in understanding the imaging and binding properties of the 2Rs15d nanobody at extended time points. As many therapeutic radioisotopes have single or multiday half-lives, this information will directly benefit the potential of the radiotherapy development of 2Rs15d for HER2-positive breast cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular , Trastuzumab/metabolismo , Tomografía de Emisión de Positrones , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Circonio/química
2.
Biomacromolecules ; 24(4): 1784-1797, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36926842

RESUMEN

Radiolabeled drug nanocarriers that can be easily imaged via positron emission tomography (PET) are highly significant as their in vivo outcome can be quantitatively PET-traced with high sensitivity. However, typical radiolabeling of most PET-guided theranostic vehicles utilizes modification with chelator ligands, which presents various challenges. In addition, unlike passive tumor targeting, specific targeting of drug delivery vehicles via binding affinity to overexpressed cancer cell receptors is crucial to improve the theranostic delivery to tumors. Herein, we developed 89Zr-labeled triblock copolymer polymersomes of 60 nm size through chelator-free radiolabeling. The polymersomes are assembled from poly(N-vinylpyrrolidone)5-b-poly(dimethylsiloxane)30-b-poly(N-vinylpyrrolidone)5 (PVPON5-PDMS30-PVPON5) triblock copolymers followed by adsorption of a degradable tannin, tannic acid (TA), on the polymersome surface through hydrogen bonding. TA serves as an anchoring layer for both 89Zr radionuclide and targeting recombinant humanized monoclonal antibody, trastuzumab (Tmab). Unlike bare PVPON5-PDMS30-PVPON5 polymersomes, TA- and Tmab-modified polymersomes demonstrated a high radiochemical yield of more than 95%. Excellent retention of 89Zr by the vesicle membrane for up to 7 days was confirmed by PET in vivo imaging. Animal biodistribution using healthy BALB/c mice confirmed the clearance of 89Zr-labeled polymersomes through the spleen and liver without their accumulation in bone, unlike the free nonbound 89Zr radiotracer. The 89Zr-radiolabeled polymersomes were found to specifically target BT474 HER2-positive breast cancer cells via the Tmab-TA complex on the vesicle surface. The noncovalent Tmab anchoring to the polymersome membrane can be highly advantageous for nanoparticle modification compared to currently developed covalent methods, as it allows easy and quick integration of a broad range of targeting proteins. Given the ability of these polymersomes to encapsulate and release anticancer therapeutics, they can be further expanded as precision-targeted therapeutic carriers for advancing human health through highly effective drug delivery strategies.


Asunto(s)
Neoplasias de la Mama , Tomografía de Emisión de Positrones , Animales , Ratones , Humanos , Femenino , Trastuzumab , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Polímeros/uso terapéutico , Quelantes , Circonio , Línea Celular Tumoral
3.
Mol Imaging ; 19: 1536012120960258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32957830

RESUMEN

Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using 89Zr-trastuzumab or 89Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.


Asunto(s)
Imagen Molecular , Neoplasias/diagnóstico por imagen , Péptidos/química , Receptor ErbB-2/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Fluorescencia , Humanos , Ratones SCID , Neoplasias/sangre , Péptidos/sangre , Tomografía Computarizada de Emisión de Fotón Único
4.
PET Clin ; 18(4): 543-555, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37339919

RESUMEN

Human epidermal growth factor receptor 2 (HER2) and HER3 provide actionable targets for both therapy and imaging in breast cancer. Further, clinical trials have shown the prognostic impact of receptor status discordance in breast cancer. Intra- and intertumoral heterogeneity of both HER and hormone receptor expression contributes to inherent errors in tissue sampling, and single biopsies are incapable of identifying discordance in biomarker expression. Numerous PET radiopharmaceuticals have been developed to evaluate (or target for therapy) HER2 and HER3 expression. This review seeks to inform on challenges and opportunities in HER2 and HER3 PET imaging in both clinical and preclinical settings.


Asunto(s)
Neoplasias de la Mama , Tomografía de Emisión de Positrones , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptor ErbB-2 , Receptor ErbB-3
5.
Diagnostics (Basel) ; 12(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36359554

RESUMEN

One in eight women will be diagnosed with breast cancer in their lifetime and approximately 25% of those cases will be HER2-positive. Current methods for diagnosing HER2-positive breast cancer involve using IHC and FISH from suspected cancer biopsies to quantify HER2 expression. HER2 PET imaging could potentially increase accuracy and improve the diagnosis of lesions that are not available for biopsies. Using two previously discovered HER2-targeting peptides, we modified each peptide with the chelator DOTA and a PEG2 linker resulting in DOTA-PEG2-GSGKCCYSL (P5) and DOTA-PEG2-DTFPYLGWWNPNEYRY (P6). Each peptide was labeled with 68Ga and was evaluated for HER2 binding using in vitro cell studies and in vivo tumor xenograft models. Both [68Ga]P5 and [68Ga]P6 showed significant binding to HER2-positive BT474 cells versus HER2-negative MDA-MB-231 cells ([68Ga]P5; 0.68 ± 0.20 versus 0.47 ± 0.05 p < 0.05 and [68Ga]P6; 0.55 ± 0.21 versus 0.34 ± 0.12 p < 0.01). [68Ga]P5 showed a higher percent injected dose per gram (%ID/g) binding to HER2-positive tumors two hours post-injection compared to HER2-negative tumors (0.24 ± 0.04 versus 0.12 ± 0.06; p < 0.05), while the [68Ga]P6 peptide showed significant binding (0.98 ± 0.22 versus 0.51 ± 0.08; p < 0.05) one hour post-injection. These results lay the groundwork for the use of peptides to image HER2-positive breast cancer.

6.
ACS Appl Mater Interfaces ; 12(51): 56792-56804, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306342

RESUMEN

Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 µm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.


Asunto(s)
Antineoplásicos/uso terapéutico , Quelantes/química , Medios de Contraste/química , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Animales , Cápsulas , Quelantes/farmacocinética , Medios de Contraste/farmacocinética , Deferoxamina/química , Deferoxamina/farmacocinética , Portadores de Fármacos/farmacocinética , Femenino , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones/métodos , Povidona/química , Povidona/farmacocinética , Medicina de Precisión/métodos , Radioisótopos/química , Taninos/química , Taninos/farmacocinética , Ondas Ultrasónicas , Circonio/química
7.
J Med Chem ; 61(10): 4593-4607, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29683322

RESUMEN

Nitric oxide (NO) mimetics and other agents capable of enhancing NO/cGMP signaling have demonstrated efficacy as potential therapies for Alzheimer's disease. A group of thiol-dependent NO mimetics known as furoxans may be designed to exhibit attenuated reactivity to provide slow onset NO effects. The present study describes the design, synthesis, and evaluation of a furoxan library resulting in the identification of a prototype furoxan, 5a, which was profiled for use in the central nervous system. Furoxan 5a demonstrated negligible reactivity toward generic cellular thiols under physiological conditions. Nonetheless, cGMP-dependent neuroprotection was observed, and 5a (20 mg/kg) reversed cholinergic memory deficits in a mouse model of passive avoidance fear memory. Importantly, 5a can be prepared as a pharmaceutically acceptable salt and is observed in the brain 12 h after oral administration, suggesting potential for daily dosing and excellent metabolic stability. Continued investigation into furoxans as attenuated NO mimetics for the CNS is warranted.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Trastornos de la Memoria/prevención & control , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxadiazoles/química , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA