Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2310842120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963249

RESUMEN

Horizontal transfer of F-like plasmids by bacterial conjugation is responsible for disseminating antibiotic resistance and virulence determinants among pathogenic Enterobacteriaceae species, a growing health concern worldwide. Central to this process is the conjugative F pilus, a long extracellular filamentous polymer that extends from the surface of plasmid donor cells, allowing it to probe the environment and make contact with the recipient cell. It is well established that the F pilus can retract to bring mating pair cells in tight contact before DNA transfer. However, whether DNA transfer can occur through the extended pilus has been a subject of active debate. In this study, we use live-cell microscopy to show that while most transfer events occur between cells in direct contact, the F pilus can indeed serve as a conduit for the DNA during transfer between physically distant cells. Our findings enable us to propose a unique model for conjugation that revises our understanding of the DNA transfer mechanism and the dissemination of drug resistance and virulence genes within complex bacterial communities.


Asunto(s)
Escherichia coli , Genes Bacterianos , Escherichia coli/genética , Plásmidos/genética , Fimbrias Bacterianas/genética , ADN Bacteriano/genética , Conjugación Genética , ADN , Transferencia de Gen Horizontal
2.
Nature ; 539(7630): 530-535, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27749817

RESUMEN

Various rod-shaped bacteria mysteriously glide on surfaces in the absence of appendages such as flagella or pili. In the deltaproteobacterium Myxococcus xanthus, a putative gliding motility machinery (the Agl-Glt complex) localizes to so-called focal adhesion sites (FASs) that form stationary contact points with the underlying surface. Here we show that the Agl-Glt machinery contains an inner-membrane motor complex that moves intracellularly along a right-handed helical path; when the machinery becomes stationary at FASs, the motor complex powers a left-handed rotation of the cell around its long axis. At FASs, force transmission requires cyclic interactions between the molecular motor and the adhesion proteins of the outer membrane via a periplasmic interaction platform, which presumably involves contractile activity of motor components and possible interactions with peptidoglycan. Our results provide a molecular model of bacterial gliding motility.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Adhesiones Focales/metabolismo , Myxococcus xanthus/fisiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Movimiento Celular , Proteínas Motoras Moleculares/metabolismo , Myxococcus xanthus/citología , Periplasma/metabolismo , Rotación
3.
Nature ; 506(7489): 489-93, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24463524

RESUMEN

What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.


Asunto(s)
Bacterias/citología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Evolución Biológica , Polaridad Celular , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Caulobacteraceae/citología , Caulobacteraceae/metabolismo , Membrana Celular/metabolismo , Evolución Molecular , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas
4.
PLoS Biol ; 11(12): e1001728, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24339744

RESUMEN

Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex) to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories.


Asunto(s)
Movimiento Celular/fisiología , Myxococcus xanthus/fisiología , Esporas Bacterianas/fisiología , Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Citoesqueleto/fisiología
5.
Proc Natl Acad Sci U S A ; 109(25): 10036-41, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22665761

RESUMEN

In biology, the extracellular matrix (ECM) promotes both cell adhesion and specific recognition, which is essential for central developmental processes in both eukaryotes and prokaryotes. However, live studies of the dynamic interactions between cells and the ECM, for example during motility, have been greatly impaired by imaging limitations: mostly the ability to observe the ECM at high resolution in absence of specific staining by live microscopy. To solve this problem, we developed a unique technique, wet-surface enhanced ellipsometry contrast (Wet-SEEC), which magnifies the contrast of transparent organic materials deposited on a substrate (called Wet-surf) with exquisite sensitivity. We show that Wet-SEEC allows both the observation of unprocessed nanofilms as low as 0.2 nm thick and their accurate 3D topographic reconstructions, directly by standard light microscopy. We next used Wet-SEEC to image slime secretion, a poorly defined property of many prokaryotic and eukaryotic organisms that move across solid surfaces in absence of obvious extracellular appendages (gliding). Using combined Wet-SEEC and fluorescent-staining experiments, we observed slime deposition by gliding Myxococcus xanthus cells at unprecedented resolution. Altogether, the results revealed that in this bacterium, slime associates preferentially with the outermost components of the motility machinery and promotes its adhesion to the substrate on the ventral side of the cell. Strikingly, analogous roles have been proposed for the extracellular proteoglycans of gliding diatoms and apicomplexa, suggesting that slime deposition is a general means for gliding organisms to adhere and move over surfaces.


Asunto(s)
Adhesión Bacteriana , Myxococcus xanthus/fisiología , Humectabilidad , Matriz Extracelular , Colorantes Fluorescentes , Propiedades de Superficie
6.
PLoS Genet ; 8(1): e1002459, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275872

RESUMEN

Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS(-) mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10(-6) and 10(-7) per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos y Sales Biliares/farmacología , Ácido Desoxicólico/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Salmonella enterica/fisiología , Factor sigma/genética , Adaptación Biológica , Proteínas Bacterianas/genética , Bilis/microbiología , Ácidos y Sales Biliares/química , Ácido Desoxicólico/química , Humanos , Dosificación Letal Mediana , Mutación/genética , Infecciones por Salmonella/genética , Salmonella enterica/genética , Factor sigma/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico/genética
7.
PLoS Genet ; 8(8): e1002872, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916026

RESUMEN

Migrating cells employ sophisticated signal transduction systems to respond to their environment and polarize towards attractant sources. Bacterial cells also regulate their polarity dynamically to reverse their direction of movement. In Myxococcus xanthus, a GTP-bound Ras-like G-protein, MglA, activates the motility machineries at the leading cell pole. Reversals are provoked by pole-to-pole switching of MglA, which is under the control of a chemosensory-like signal transduction cascade (Frz). It was previously known that the asymmetric localization of MglA at one cell pole is regulated by MglB, a GTPase Activating Protein (GAP). In this process, MglB specifically localizes at the opposite lagging cell pole and blocks MglA localization at that pole. However, how MglA is targeted to the leading pole and how Frz activity switches the localizations of MglA and MglB synchronously remained unknown. Here, we show that MglA requires RomR, a previously known response regulator protein, to localize to the leading cell pole efficiently. Specifically, RomR-MglA and RomR-MglB complexes are formed and act complementarily to establish the polarity axis, segregating MglA and MglB to opposite cell poles. Finally, we present evidence that Frz signaling may regulate MglA localization through RomR, suggesting that RomR constitutes a link between the Frz-signaling and MglAB polarity modules. Thus, in Myxococcus xanthus, a response regulator protein governs the localization of a small G-protein, adding further insight to the polarization mechanism and suggesting that motility regulation evolved by recruiting and combining existing signaling modules of diverse origins.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Activadoras de GTPasa/genética , Myxococcus xanthus/fisiología , Transducción de Señal/genética , Proteínas Bacterianas/metabolismo , Polaridad Celular/genética , Quimiotaxis/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Unión Proteica
8.
EMBO J ; 29(2): 315-26, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19959988

RESUMEN

Gliding motility in the bacterium Myxococcus xanthus uses two motility engines: S-motility powered by type-IV pili and A-motility powered by uncharacterized motor proteins and focal adhesion complexes. In this paper, we identified MreB, an actin-like protein, and MglA, a small GTPase of the Ras superfamily, as essential for both motility systems. A22, an inhibitor of MreB cytoskeleton assembly, reversibly inhibited S- and A-motility, causing rapid dispersal of S- and A-motility protein clusters, FrzS and AglZ. This suggests that the MreB cytoskeleton is involved in directing the positioning of these proteins. We also found that a DeltamglA motility mutant showed defective localization of AglZ and FrzS clusters. Interestingly, MglA-YFP localization mimicked both FrzS and AglZ patterns and was perturbed by A22 treatment, consistent with results indicating that both MglA and MreB bind to motility complexes. We propose that MglA and the MreB cytoskeleton act together in a pathway to localize motility proteins such as AglZ and FrzS to assemble the A-motility machineries. Interestingly, M. xanthus motility systems, like eukaryotic systems, use an actin-like protein and a small GTPase spatial regulator.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Myxococcus xanthus/citología , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Polaridad Celular , Citoesqueleto/metabolismo , Proteínas Motoras Moleculares/análisis , Mutación , Myxococcus xanthus/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología
9.
BMC Microbiol ; 14: 3, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24383402

RESUMEN

BACKGROUND: Legionella pneumophila is a waterborne pathogen responsible for Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. After disinfection, L. pneumophila has been detected, like many other bacteria, in a "viable but non culturable" state (VBNC). The physiological significance of the VBNC state is unclear and controversial: it could be an adaptive response favoring long-term survival; or the consequence of cellular deterioration which, despite maintenance of certain features of viable cells, leads to death; or an injured state leading to an artificial loss of culturability during the plating procedure. VBNC cells have been found to be resuscitated by contact with amoebae. RESULTS: We used quantitative microscopic analysis, to investigate this "resuscitation" phenomenon in L. pneumophila in a model involving amending solid plating media with ROS scavengers (pyruvate or glutamate), and co-culture with amoebae. Our results suggest that the restoration observed in the presence of pyruvate and glutamate may be mostly due to the capacity of these molecules to help the injured cells to recover after a stress. We report evidence that this extracellular signal leads to a transition from a not-culturable form to a culturable form of L. pneumophila, providing a technique for recovering virulent and previously uncultivated forms of L. pneumophila. CONCLUSION: These new media could be used to reduce the risk of underestimation of counts of virulent of L. pneumophila cells in environmental samples.


Asunto(s)
Amoeba/crecimiento & desarrollo , Amoeba/microbiología , Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Desinfectantes/toxicidad , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/fisiología , Ácido Glutámico/metabolismo , Humanos , Legionella pneumophila/efectos de los fármacos , Legionella pneumophila/crecimiento & desarrollo , Microscopía , Ácido Pirúvico/metabolismo , Resucitación
10.
PLoS Genet ; 7(9): e1002268, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931562

RESUMEN

Bacteria glide across solid surfaces by mechanisms that have remained largely mysterious despite decades of research. In the deltaproteobacterium Myxococcus xanthus, this locomotion allows the formation stress-resistant fruiting bodies where sporulation takes place. However, despite the large number of genes identified as important for gliding, no specific machinery has been identified so far, hampering in-depth investigations. Based on the premise that components of the gliding machinery must have co-evolved and encode both envelope-spanning proteins and a molecular motor, we re-annotated known gliding motility genes and examined their taxonomic distribution, genomic localization, and phylogeny. We successfully delineated three functionally related genetic clusters, which we proved experimentally carry genes encoding the basal gliding machinery in M. xanthus, using genetic and localization techniques. For the first time, this study identifies structural gliding motility genes in the Myxobacteria and opens new perspectives to study the motility mechanism. Furthermore, phylogenomics provide insight into how this machinery emerged from an ancestral conserved core of genes of unknown function that evolved to gliding by the recruitment of functional modules in Myxococcales. Surprisingly, this motility machinery appears to be highly related to a sporulation system, underscoring unsuspected common mechanisms in these apparently distinct morphogenic phenomena.


Asunto(s)
Genes Bacterianos/fisiología , Locomoción/genética , Modelos Biológicos , Myxococcus xanthus/genética , Myxococcus xanthus/fisiología , Esporas Bacterianas/genética , Evolución Biológica , Filogenia , Esporas Bacterianas/metabolismo
11.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979141

RESUMEN

The flagellum is the most complex macromolecular structure known in bacteria and comprised of around two dozen distinct proteins. The main building block of the long, external flagellar filament, flagellin, is secreted through the flagellar type-III secretion system at a remarkable rate of several tens of thousands amino acids per second, significantly surpassing the rates achieved by other pore-based protein secretion systems. The evolutionary implications and potential benefits of this high secretion rate for flagellum assembly and function, however, have remained elusive. In this study, we provide both experimental and theoretical evidence that the flagellar secretion rate has been evolutionarily optimized to facilitate rapid and efficient construction of a functional flagellum. By synchronizing flagellar assembly, we found that a minimal filament length of 2.5 µm was required for swimming motility. Biophysical modelling revealed that this minimal filament length threshold resulted from an elasto-hydrodynamic instability of the whole swimming cell, dependent on the filament length. Furthermore, we developed a stepwise filament labeling method combined with electron microscopy visualization to validate predicted flagellin secretion rates of up to 10,000 amino acids per second. A biophysical model of flagellum growth demonstrates that the observed high flagellin secretion rate efficiently balances filament elongation and energy consumption, thereby enabling motility in the shortest amount of time. Taken together, these insights underscore the evolutionary pressures that have shaped the development and optimization of the flagellum and type-III secretion system, illuminating the intricate interplay between functionality and efficiency in assembly of large macromolecular structures. Significance statement: Our study demonstrates how protein secretion of the bacterial flagellum is finely tuned to optimize filament assembly rate and flagellum function while minimizing energy consumption. By measuring flagellar filament lengths and bacterial swimming after initiation of flag-ellum assembly, we were able to establish the minimal filament length necessary for swimming motility, which we rationalized physically as resulting from an elasto-hydrodynamic instability of the swimming cell. Our bio-physical model of flagellum growth further illustrates how the physiological flagellin secretion rate is optimized to maximize filament elongation while conserving energy. These findings illuminate the evolutionary pressures that have shaped the function of the bacterial flagellum and type-III secretion system, driving improvements in bacterial motility and overall fitness.

12.
mBio ; 15(6): e0115724, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38757970

RESUMEN

Coordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in Staphylococcus aureus. We establish that there is a synthetic lethal relationship between CozE and UgtP, the enzyme synthesizing the LTA glycolipid anchor Glc2DAG. By contrast, in cells lacking LtaA, the flippase of Glc2DAG, the essentiality of CozE proteins was alleviated, suggesting that the function of CozE proteins is linked to the synthesis and flipping of the glycolipid anchor. CozE proteins were indeed found to modulate the flipping activity of LtaA in vitro. Furthermore, CozEb was shown to control LTA polymer length and stability. Together, these findings establish CozE proteins as novel players in membrane homeostasis and LTA biosynthesis in S. aureus.IMPORTANCELipoteichoic acids are major constituents of the cell wall of Gram-positive bacteria. These anionic polymers are important virulence factors and modulators of antibiotic susceptibility in the important pathogen Staphylococcus aureus. They are also critical for maintaining cell integrity and facilitating proper cell division. In this work, we discover that a family of membrane proteins named CozE is involved in the biosynthesis of lipoteichoic acids (LTAs) in S. aureus. CozE proteins have previously been shown to affect bacterial cell division, but we here show that these proteins affect LTA length and stability, as well as the flipping of glycolipids between membrane leaflets. This new mechanism of LTA control may thus have implications for the virulence and antibiotic susceptibility of S. aureus.


Asunto(s)
Proteínas Bacterianas , Lipopolisacáridos , Proteínas de la Membrana , Staphylococcus aureus , Ácidos Teicoicos , Ácidos Teicoicos/biosíntesis , Ácidos Teicoicos/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Pared Celular/metabolismo , Membrana Celular/metabolismo
13.
PLoS Biol ; 8(7): e1000430, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20652021

RESUMEN

Regulated cell polarity is central to many cellular processes. We investigated the mechanisms that govern the rapid switching of cell polarity (reversals) during motility of the bacterium Myxococcus xanthus. Cellular reversals are mediated by pole-to-pole oscillations of motility proteins and the frequency of the oscillations is under the control of the Frz chemosensory system. However, the molecular mechanism that creates dynamic polarity remained to be characterized. In this work, we establish that polarization is regulated by the GTP cycle of a Ras-like GTPase, MglA. We initially sought an MglA regulator and purified a protein, MglB, which was found to activate GTP hydrolysis by MglA. Using live fluorescence microscopy, we show that MglA and MglB localize at opposite poles and oscillate oppositely when cells reverse. In absence of MglB, MglA-YFP accumulates at the lagging cell end, leading to a strikingly aberrant reversal cycle. Spatial control of MglA is achieved through the GAP activity of MglB because an MglA mutant that cannot hydrolyze GTP accumulates at the lagging cell end, despite the presence of MglB. Genetic and cell biological studies show that the MglA-GTP cycle controls dynamic polarity and the reversal switch. The study supports a model wherein a chemosensory signal transduction system (Frz) activates reversals by relieving a spatial inhibition at the back pole of the cells: reversals are allowed by Frz-activated switching of MglB to the opposite pole, allowing MglA-GTP to accumulate at the back of the cells and create the polarity switch. In summary, our results provide insight into how bacteria regulate their polarity dynamically, revealing unsuspected conserved regulations with eukaryots.


Asunto(s)
Proteínas Bacterianas/metabolismo , Polaridad Celular , Proteínas Activadoras de GTPasa/metabolismo , Myxococcus xanthus/citología , Myxococcus xanthus/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Modelos Biológicos , Movimiento , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
14.
EMBO Rep ; 12(4): 321-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21350502

RESUMEN

Reactive oxygen species (ROS) are harmful because they can oxidize biological macromolecules. We show here that atmospheric CO(2) (concentration range studied: 40-1,000 p.p.m.) increases death rates due to H(2)O(2) stress in Escherichia coli in a dose-specific manner. This effect is correlated with an increase in H(2)O(2)-induced mutagenesis and, as shown by 8-oxo-guanine determinations in cells, DNA base oxidation rates. Moreover, the survival of mutants that are sensitive to aerobic conditions (Hpx(-) dps and recA fur), presumably because of their inability to tolerate ROS, seems to depend on CO(2) concentration. Thus, CO(2) exacerbates ROS toxicity by increasing oxidative cellular lesions.


Asunto(s)
Dióxido de Carbono/toxicidad , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Mutagénesis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
15.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37849218

RESUMEN

Recycling of undecaprenol pyrophosphate is critical to regenerate the pool of undecaprenol monophosphate required for cell wall biosynthesis. Undecaprenol pyrophosphate is dephosphorylated by membrane-associated undecaprenyl pyrophosphate phosphatases such as UppP or type 2 Phosphatidic Acid Phosphatases (PAP2) and then transferred across the cytoplasmic membrane by Und-P flippases such as PopT (DUF368-containing protein) or UptA (a DedA family protein). While the deletion of uppP in S. pneumoniae has been reported to increase susceptibility to bacitracin and reduce infectivity in a murine infection model, the presence of PAP2 family proteins or Und-P flippases and their potential interplay with UppP in S. pneumoniae remained unknown. In this report, we identified two PAP2 family proteins and a DUF368-containing protein and investigated their roles together with that of UppP in cell growth, cell morphology and susceptibility to bacitracin in S. pneumoniae. Our results suggest that the undecaprenol monophosphate recycling pathway in S. pneumoniae could result from a functional redundancy between UppP, the PAP2-family protein Spr0434 and the DUF368-containing protein Spr0889.


Asunto(s)
Bacitracina , Streptococcus pneumoniae , Ratones , Animales , Bacitracina/farmacología , Streptococcus pneumoniae/genética , Difosfatos
16.
mBio ; 14(5): e0141123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37728370

RESUMEN

IMPORTANCE: Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.


Asunto(s)
Peptidil Transferasas , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Peptidoglicano/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Lactamas/metabolismo , Mutación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo
17.
Nat Microbiol ; 8(10): 1896-1910, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37679597

RESUMEN

The order Corynebacteriales includes major industrial and pathogenic Actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis. These bacteria have multi-layered cell walls composed of the mycolyl-arabinogalactan-peptidoglycan complex and a polar growth mode, thus requiring tight coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the coiled-coil protein Wag31. Here, using C. glutamicum, we report the discovery of two divisome members: a gephyrin-like repurposed molybdotransferase (Glp) and its membrane receptor (GlpR). Our results show how cell cycle progression requires interplay between Glp/GlpR, FtsZ and Wag31, showcasing a crucial crosstalk between the divisome and elongasome machineries that might be targeted for anti-mycobacterial drug discovery. Further, our work reveals that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis, similar to the gephyrin/GlyR system that mediates synaptic signalling in higher eukaryotes through network organization of membrane receptors and the microtubule cytoskeleton.


Asunto(s)
Eucariontes , Mycobacterium tuberculosis , Eucariontes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
18.
Biochim Biophys Acta ; 1811(4): 234-41, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21238605

RESUMEN

The fact that Mycobacterium tuberculosis mobilizes lipid bodies (LB) located in the cytosol during infection process has been proposed for decades. However, the mechanisms and dynamics of mobilization of these lipid droplets within mycobacteria are still not completely characterized. Evidence in favour of this characterization was obtained here using a combined fluorescent microscopy and computational image processing approach. The decrease in lipid storage levels observed under nutrient depletion conditions was correlated with a significant increase in the size of the bacteria. LB fragmentation/condensation cycles were monitored in real time. The exact contribution of lipases in this process was confirmed using the lipase inhibitor tetrahydrolipstatin, which was found to prevent LB degradation and to limit the bacterial cell growth. The method presented here provides a powerful tool for monitoring in vivo lipolysis in mycobacteria and for obtaining new insights on the growth of cells and their entry into the dormant or reactivation phase. It should be particularly useful for studying the effects of chemical inhibitors and activators on cells as well as investigating other metabolic pathways.


Asunto(s)
Lipólisis , Microscopía Fluorescente/métodos , Mycobacterium smegmatis/crecimiento & desarrollo , Imagen de Lapso de Tiempo/métodos , Tuberculosis/metabolismo , Proliferación Celular , Citosol/metabolismo , Lipasa/metabolismo , Inanición , Triglicéridos/metabolismo , Tuberculosis/microbiología
19.
Curr Opin Microbiol ; 60: 44-50, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33588129

RESUMEN

Years of intense research have shown that the assembly of peptidoglycan, the extracellular mesh-like polymer surrounding the bacterial cell, is incredibly complex. It requires a suite of reactions catalyzed by dynamic macromolecular protein complexes whose localization and activity should be finely regulated in space and time. In this review, we focus on the main developments reported over the last five years for the assembly of peptidoglycan in Firmicutes, a bacterial phylum that comprises monoderm bacteria and that encompasses well studied bacterial models with different cell shapes and lifestyles.


Asunto(s)
Firmicutes , Peptidoglicano , Bacterias/genética , Proteínas Bacterianas/genética , Pared Celular
20.
mBio ; 11(5)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109762

RESUMEN

Control of peptidoglycan assembly is critical to maintain bacterial cell size and morphology. Penicillin-binding proteins (PBPs) are crucial enzymes for the polymerization of the glycan strand and/or their cross-linking via peptide branches. Over the last few years, it has become clear that PBP activity and localization can be regulated by specific cognate regulators. The first regulator of PBP activity in Gram-positive bacteria was discovered in the human pathogen Streptococcus pneumoniae This regulator, named CozE, controls the activity of the bifunctional PBP1a to promote cell elongation and achieve a proper cell morphology. In this work, we studied a previously undescribed CozE homolog in the pneumococcus, which we named CozEb. This protein displays the same membrane organization as CozE but is much more widely conserved among Streptococcaceae genomes. Interestingly, cozEb deletion results in cells that are smaller than their wild-type counterparts, which is the opposite effect of cozE deletion. Furthermore, double deletion of cozE and cozEb results in poor viability and exacerbated cell shape defects. Coimmunoprecipitation further showed that CozEb is part of the same complex as CozE and PBP1a. However, although we confirmed that CozE is required for septal localization of PBP1a, the absence of CozEb has no effect on PBP1a localization. Nevertheless, we found that the overexpression of CozEb can compensate for the absence of CozE in all our assays. Altogether, our results show that the interplay between PBP1a and the cell size regulators CozE and CozEb is required for the maintenance of pneumococcal cell size and shape.IMPORTANCE Penicillin-binding proteins (PBPs), the proteins catalyzing the last steps of peptidoglycan assembly, are critical for bacteria to maintain cell size, shape, and integrity. PBPs are consequently attractive targets for antibiotics. Resistance to antibiotics in Streptococcus pneumoniae (the pneumococcus) are often associated with mutations in the PBPs. In this work, we describe a new protein, CozEb, controlling the cell size of pneumococcus. CozEb is a highly conserved integral membrane protein that works together with other proteins to regulate PBPs and peptidoglycan synthesis. Deciphering the intricate mechanisms by which the pneumococcus controls peptidoglycan assembly might allow the design of innovative anti-infective strategies, for example, by resensitizing resistant strains to PBP-targeting antibiotics.


Asunto(s)
Proteínas Bacterianas/genética , Homeostasis , Proteínas de la Membrana/genética , Proteínas de Unión a las Penicilinas/genética , Streptococcus pneumoniae/genética , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biología Computacional , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Peptidoglicano/metabolismo , Fenotipo , Streptococcus pneumoniae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA