Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 585(7826): 524-529, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968261

RESUMEN

Self-assembling colloidal particles in the cubic diamond crystal structure could potentially be used to make materials with a photonic bandgap1-3. Such materials are beneficial because they suppress spontaneous emission of light1 and are valued for their applications as optical waveguides, filters and laser resonators4, for improving light-harvesting technologies5-7 and for other applications4,8. Cubic diamond is preferred for these applications over more easily self-assembled structures, such as face-centred-cubic structures9,10, because diamond has a much wider bandgap and is less sensitive to imperfections11,12. In addition, the bandgap in diamond crystals appears at a refractive index contrast of about 2, which means that a photonic bandgap could be achieved using known materials at optical frequencies; this does not seem to be possible for face-centred-cubic crystals3,13. However, self-assembly of colloidal diamond is challenging. Because particles in a diamond lattice are tetrahedrally coordinated, one approach has been to self-assemble spherical particles with tetrahedral sticky patches14-16. But this approach lacks a mechanism to ensure that the patchy spheres select the staggered orientation of tetrahedral bonds on nearest-neighbour particles, which is required for cubic diamond15,17. Here we show that by using partially compressed tetrahedral clusters with retracted sticky patches, colloidal cubic diamond can be self-assembled using patch-patch adhesion in combination with a steric interlock mechanism that selects the required staggered bond orientation. Photonic bandstructure calculations reveal that the resulting lattices (direct and inverse) have promising optical properties, including a wide and complete photonic bandgap. The colloidal particles in the self-assembled cubic diamond structure are highly constrained and mechanically stable, which makes it possible to dry the suspension and retain the diamond structure. This makes these structures suitable templates for forming high-dielectric-contrast photonic crystals with cubic diamond symmetry.

2.
Proc Natl Acad Sci U S A ; 115(37): 9110-9115, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154166

RESUMEN

A classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well-cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress-strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve. For low volume fractions (<3%) of cross-linked network, we demonstrate with mechanoluminescence experiments that the elastomer undergoes a strong localized softening due to scission of covalent bonds followed by a stable necking process, a phenomenon never observed before in elastomers. The quantification of the emitted luminescence shows that the damage in the material occurs in two steps, with a first step where random bond breakage occurs in the material accompanied by a moderate level of dissipated energy and a second step where a moderate level of more localized bond scission leads to a much larger level of dissipated energy. This combined use of mechanical macroscopic testing and molecular bond scission data provides unprecedented insight on how tough soft materials can damage and fail.

3.
J Am Chem Soc ; 141(37): 14853-14863, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31448592

RESUMEN

Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micromachines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of monopatch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. A particle with two patches of different sizes allows for "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.

4.
Nat Mater ; 16(6): 652-657, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28250446

RESUMEN

Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

5.
Opt Express ; 26(23): 30052-30060, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469885

RESUMEN

Non-spherical colloidal building blocks introduce new design principles for self-assembly, making it possible to realize optical structures that could not be assembled previously. With this added complexity, the phase space expands enormously so that computer simulation becomes a valuable tool to design and assemble structures with useful optical properties. We recently demonstrated that tetrahedral clusters and spheres, interacting through a DNA-mediated short-range attractive interaction, self-assemble into a superlattice of interpenetrating diamond and pyrochlore sublattices, but only if the clusters consist of partially overlapping spheres. Here we show how the domain of crystallization can be extended by implementing a longer range potential and consider how the resultant structures affect the photonic band gaps of the underlying pyrochlore sublattice. We show that with the proper design, using clusters of overlapping spheres lead to larger photonic band gaps that open up at lower optical contrast.

6.
J Am Chem Soc ; 137(33): 10760-6, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26192470

RESUMEN

We report on synthetic strategies to fabricate DNA-coated micrometer-sized colloids that, upon thermal annealing, self-assemble into various crystal structures. Colloids of a wide range of chemical compositions, including poly(styrene), poly(methyl methacrylate), titania, silica, and a silica-methacrylate hybrid material, are fabricated with smooth particle surfaces and a dense layer of surface functional anchors. Single-stranded oligonucleotides with a short sticky end are covalently grafted onto particle surfaces employing a strain-promoted alkyne-azide cycloaddition reaction resulting in DNA coatings with areal densities an order of magnitude higher than previously reported. Our approach allows the DNA-coated colloids not only to aggregate upon cooling but also to anneal and rearrange while still bound together, leading to the formation of colloidal crystal compounds when particles of different sizes or different materials are combined.


Asunto(s)
ADN/química , Alquinos/química , Azidas/química , Coloides , Cristalización , Reacción de Cicloadición , Metacrilatos/química , Modelos Moleculares , Conformación Molecular , Compuestos de Organosilicio/química , Polimetil Metacrilato/química , Poliestirenos/química , Dióxido de Silicio/química , Propiedades de Superficie , Titanio/química
7.
Nanoscale ; 15(2): 573-577, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36515145

RESUMEN

Patchy particles have received great attention due to their ability to develop directional and selective interactions and serve as building units for the self-assembly of innovative colloidal molecules and crystalline structures. Although synthesizing particles with multiple dissimilar patches is still highly challenging and lacks efficient methods, these building blocks would open paths towards a broader range of ordered materials with inherent properties. Herein, we describe a new approach to pattern functional DNA patches at the surface of particles, by the use of colloidal stamps. DNA inks are transferred only at the contact zones between the target particles and the stamps thanks to selective strand-displacement reactions. The produced DNA-patchy particles are ideal candidates to act as advanced precision/designer building blocks to self-assemble the next generation of colloidal materials.


Asunto(s)
Coloides , ADN , Coloides/química , ADN/química
8.
Nat Commun ; 10(1): 3380, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358762

RESUMEN

Molecular motors are essential to the living, generating fluctuations that boost transport and assist assembly. Active colloids, that consume energy to move, hold similar potential for man-made materials controlled by forces generated from within. Yet, their use as a powerhouse in materials science lacks. Here we show a massive acceleration of the annealing of a monolayer of passive beads by moderate addition of self-propelled microparticles. We rationalize our observations with a model of collisions that drive active fluctuations and activate the annealing. The experiment is quantitatively compared with Brownian dynamic simulations that further unveil a dynamical transition in the mechanism of annealing. Active dopants travel uniformly in the system or co-localize at the grain boundaries as a result of the persistence of their motion. Our findings uncover the potential of internal activity to control materials and lay the groundwork for the rise of materials science beyond equilibrium.


Asunto(s)
Algoritmos , Fenómenos Biofísicos , Coloides/química , Simulación de Dinámica Molecular , Movimiento (Física) , Tamaño de la Partícula
9.
Nat Commun ; 6: 7253, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26078020

RESUMEN

DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.


Asunto(s)
Coloides/química , ADN/química , Microesferas , Cristalización , Difusión , Citometría de Flujo , Temperatura
10.
Science ; 344(6180): 186-9, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24723609

RESUMEN

Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA