RESUMEN
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulación de la Expresión Génica de las Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolasas Nudix , Cloroplastos/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genéticaRESUMEN
Terpenoids constitute the largest class of plant primary and secondary metabolites with a broad range of biological and ecological functions. They are synthesized from isopentenyl diphosphate and dimethylallyl diphosphate, which in plastids are condensed by geranylgeranyl diphosphate synthases (GGPPSs) to produce GGPP (C20) for diterpene biosynthesis and by geranyl diphosphate synthases (GPPSs) to form GPP (C10) for monoterpene production. Depending on the plant species, unlike homomeric GGPPSs, GPPSs exist as homo- and heteromers, the latter of which contain catalytically inactive GGPPS-homologous small subunits (SSUs) that can interact with GGPPSs. By combining phylogenetic analysis with functional characterization of GGPPS homologs from a wide range of photosynthetic organisms, we investigated how different GPPS architectures have evolved within the GGPPS protein family. Our results reveal that GGPPS gene family expansion and functional divergence began early in nonvascular plants, and that independent parallel evolutionary processes gave rise to homomeric and heteromeric GPPSs. By site-directed mutagenesis and molecular dynamics simulations, we also discovered that Leu-Val/Val-Ala pairs of amino acid residues were pivotal in the functional divergence of homomeric GPPSs and GGPPSs. Overall, our study elucidated an evolutionary path for the formation of GPPSs with different architectures from GGPPSs and uncovered the molecular mechanisms involved in this differentiation.
Asunto(s)
Dimetilaliltranstransferasa , Diterpenos , Farnesiltransferasa/genética , Farnesiltransferasa/metabolismo , Filogenia , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Diterpenos/metabolismoRESUMEN
Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.
Asunto(s)
Geraniltranstransferasa , Rosa , Geraniltranstransferasa/genética , Ácido Mevalónico/metabolismo , Rosa/metabolismo , Citosol/metabolismo , Filogenia , Terpenos/metabolismo , Flores/metabolismoRESUMEN
The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day-night cycle, but the underlying mechanisms remain elusive. In Petunia hybrida cv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators. Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day-night oscillation of the biosynthetic gene network of specialized metabolites. By performing time-course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day-night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes. Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.
Asunto(s)
Histonas , Petunia , Histonas/metabolismo , Acetilación , Redes y Vías Metabólicas , Procesamiento Proteico-Postraduccional , Cromatina/metabolismo , Flores/fisiología , Petunia/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto-enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.
Asunto(s)
Cimenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Lamiaceae/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Timol/análogos & derivados , Timol/metabolismo , Cimenos/química , Sistema Enzimático del Citocromo P-450/genética , Lamiaceae/enzimología , Lamiaceae/genética , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deshidrogenasas-Reductasas de Cadena Corta/genética , Timol/químicaRESUMEN
Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes of Petunia hybrida flower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs). The model cuticle was composed of an n-tetracosane (C24 H50 ), 1-docosanol (C22 H45 OH), and 3-methylbutyl dodecanoate (C17 H34 O2 ), reflecting the relative chain length, functional groups, molecular arrangements, and crystallinity of the natural waxes. Molecular dynamics simulations were performed to obtain diffusion coefficients for compounds moving through waxes of varying composition. Simulated VOC diffusivities of the model system were found to highly correlate with in vitro measurements in isolated petunia cuticles. VOC diffusivity increased up to 30-fold in completely amorphous waxes, indicating a significant effect of crystallinity on cuticular permeability. The crystallinity of the waxes was highly dependent on the elongation of the lattice length and decrease in gap width between crystalline unit cells. Diffusion of water and higher molecular weight VOCs were significantly affected by alterations in crystalline spacing and lengths, whereas the low molecular weight VOCs were less affected. Comparison of measured diffusion coefficients from atomistic simulations and emissions from petunia flowers indicates that the role of the plant cuticle in the VOC emission network is attributed to the differential control on mass transfer of individual VOCs by controlling the composition, amount, and dynamics of scent emission.
Asunto(s)
Petunia , Compuestos Orgánicos Volátiles , Células Epidérmicas , Epidermis de la Planta/química , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/análisis , Agua , Ceras/químicaRESUMEN
Scent bouquets produced by the flowers of Petunia spp. (petunia) are composed of a complex mixture of floral volatile benzenoid and phenylpropanoid compounds (FVBPs), which are specialized metabolites derived from phenylalanine (Phe) through an interconnected network of enzymes. The biosynthesis and emission of high levels of these volatiles requires coordinated transcriptional activation of both primary and specialized metabolic networks. The petunia R2R3-MYB transcription factor ODORANT 1 (ODO1) was identified as a master regulator of FVBP production and emission; however, our knowledge of the direct regulatory targets of ODO1 has remained limited. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in petunia flowers, we identify genome-wide ODO1-bound genes that are enriched not only in genes involved in the biosynthesis of the Phe precursor, as previously reported, but also genes associated with the specialized metabolic pathways involved in generating phenylpropanoid intermediates for FVBPs. ODO1-bound genes are also involved in methionine and S-adenosylmethionine metabolism, which could modulate methyl group supplies for certain FVBPs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and RNA-seq analysis in an ODO1 RNAi knockdown line revealed that ODO1-bound targets are expressed at lower levels when ODO1 is suppressed. A cis-regulatory motif, CACCAACCCC, was identified as a potential binding site for ODO1 in the promoters of genes that are both bound and activated by ODO1, which was validated by in planta promoter reporter assays with wild-type and mutated promoters. Overall, our work presents a mechanistic model for ODO1 controlling an extensive gene regulatory network that contributes to FVBP production to give rise to floral scent.
Asunto(s)
Petunia , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
Nudix hydrolases are conserved enzymes ubiquitously present in all kingdoms of life. Recent research revealed that several Nudix hydrolases are involved in terpenoid metabolism in plants. In modern roses, RhNUDX1 is responsible for formation of geraniol, a major compound of rose scent. Nevertheless, this compound is produced by monoterpene synthases in many geraniol-producing plants. As a consequence, this raised the question about the origin of RhNUDX1 function and the NUDX1 gene evolution in Rosaceae, in wild roses or/and during the domestication process. Here, we showed that three distinct clades of NUDX1 emerged in the Rosoidae subfamily (Nudx1-1 to Nudx1-3 clades), and two subclades evolved in the Rosa genus (Nudx1-1a and Nudx1-1b subclades). We also showed that the Nudx1-1b subclade was more ancient than the Nudx1-1a subclade, and that the NUDX1-1a gene emerged by a trans-duplication of the more ancient NUDX1-1b gene. After the transposition, NUDX1-1a was cis-duplicated, leading to a gene dosage effect on the production of geraniol in different species. Furthermore, the NUDX1-1a appearance was accompanied by the evolution of its promoter, most likely from a Copia retrotransposon origin, leading to its petal-specific expression. Thus, our data strongly suggest that the unique function of NUDX1-1a in geraniol formation was evolved naturally in the genus Rosa before domestication.
Asunto(s)
Rosa , Rosaceae , Monoterpenos Acíclicos , Domesticación , Rosa/genética , Rosa/metabolismoRESUMEN
Lignin, one of the most abundant polymers in plants, is derived from the phenylpropanoid pathway, which also gives rise to an array of metabolites that are essential for plant fitness. Genetic engineering of lignification can cause drastic changes in transcription and metabolite accumulation with or without an accompanying development phenotype. To understand the impact of lignin perturbation, we analyzed transcriptome and metabolite data from the rapidly lignifying stem tissue in 13 selected phenylpropanoid mutants and wild-type Arabidopsis (Arabidopsis thaliana). Our dataset contains 20,974 expressed genes, of which over 26% had altered transcript levels in at least one mutant, and 18 targeted metabolites, all of which displayed altered accumulation in at least one mutant. We found that lignin biosynthesis and phenylalanine supply via the shikimate pathway are tightly co-regulated at the transcriptional level. The hierarchical clustering analysis of differentially expressed genes (DEGs) grouped the 13 mutants into 5 subgroups with similar profiles of mis-regulated genes. Functional analysis of the DEGs in these mutants and correlation between gene expression and metabolite accumulation revealed system-wide effects on transcripts involved in multiple biological processes.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma/genéticaRESUMEN
As sessile organisms, plants evolved elaborate metabolic systems that produce a plethora of specialized metabolites as a means to survive challenging terrestrial environments. Decades of research have revealed the genetic and biochemical basis for a multitude of plant specialized metabolic pathways. Nevertheless, knowledge is still limited concerning the selective advantages provided by individual and collective specialized metabolites to the reproductive success of diverse host plants. Here we review the biological functions conferred by various classes of plant specialized metabolites in the context of the interaction of plants with their surrounding environment. To achieve optimal multifunctionality of diverse specialized metabolic processes, plants use various adaptive mechanisms at subcellular, cellular, tissue, organ and interspecies levels. Understanding these mechanisms and the evolutionary trajectories underlying their occurrence in nature will ultimately enable efficient bioengineering of desirable metabolic traits in chassis organisms.
Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Epigénesis Genética/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas/metabolismoRESUMEN
The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis. These results reveal that the cuticle is not simply a passive diffusion barrier for VOCs to cross, but plays the aforementioned complex roles in the emission process as an integral member of the overall VOC network.
Asunto(s)
Flores/química , Petunia/química , Compuestos Orgánicos Volátiles/química , Regulación hacia Abajo , Genes de Plantas/genética , Fenilalanina/química , Interferencia de ARN , SolventesRESUMEN
Out of the three aromatic amino acids, the highest flux in plants is directed towards phenylalanine, which is utilized to synthesize proteins and thousands of phenolic metabolites contributing to plant fitness. Phenylalanine is produced predominantly in plastids via the shikimate pathway and subsequent arogenate pathway, both of which are subject to complex transcriptional and post-transcriptional regulation. Previously, it was shown that allosteric feedback inhibition of arogenate dehydratase (ADT), which catalyzes the final step of the arogenate pathway, restricts flux through phenylalanine biosynthesis. Here, we show that in petunia (Petunia hybrida) flowers, which typically produce high phenylalanine levels, ADT regulation is relaxed, but not eliminated. Moderate expression of a feedback-insensitive ADT increased flux towards phenylalanine, while high overexpression paradoxically reduced phenylalanine formation. This reduction could be partially, but not fully, recovered by bypassing other known metabolic flux control points in the aromatic amino acid network. Using comparative transcriptomics, reverse genetics, and metabolic flux analysis, we discovered that transcriptional regulation of the d-ribulose-5-phosphate 3-epimerase gene in the pentose phosphate pathway controls flux into the shikimate pathway. Taken together, our findings reveal that regulation within and upstream of the shikimate pathway shares control over phenylalanine biosynthesis in the plant cell.
Asunto(s)
Hidroliasas/genética , Petunia/genética , Petunia/metabolismo , Fenilalanina/biosíntesis , Proteínas de Plantas/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroliasas/metabolismo , Mutación , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plastidios/genética , Plastidios/metabolismo , Metabolismo Secundario/genética , Ácido Shikímico/metabolismoRESUMEN
Galling insects gain food and shelter by inducing specialized anatomical structures in their plant hosts. Such galls often accumulate plant defensive metabolites protecting the inhabiting insects from predation. We previously found that, despite a marked natural chemopolymorphism in natural populations of Pistacia palaestina, the monoterpene content in Baizongia pistaciae-induced galls is substantially higher than in leaves of their hosts. Here we show a general up-regulation of key structural genes in both the plastidial and cytosolic terpene biosynthetic pathways in galls as compared with non-colonized leaves. Novel prenyltransferases and terpene synthases were functionally expressed in Escherichia coli to reveal their biochemical function. Individual Pistacia trees exhibiting chemopolymorphism in terpene compositions displayed differential up-regulation of selected terpene synthase genes, and the metabolites generated by their gene products in vitro corresponded to the monoterpenes accumulated by each tree. Our results delineate molecular mechanisms responsible for the formation of enhanced monoterpene in galls and the observed intraspecific monoterpene chemodiversity displayed in P. palaestina. We demonstrate that gall-inhabiting aphids transcriptionally reprogram their host terpene pathways by up-regulating tree-specific genes, boosting the accumulation of plant defensive compounds for the protection of colonizing insects.
Asunto(s)
Áfidos , Pistacia , Animales , Tumores de Planta , Terpenos , Regulación hacia ArribaRESUMEN
Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores; however, flower chemical defenses are rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis (Arabidopsis thaliana) are tightly coexpressed in floral tissues, upon anthesis and during floral bud development. TPS11 was previously reported to generate a blend of sesquiterpenes. By heterologous coexpression of TPS11 and CYP706A3 in yeast (Saccharomyces cerevisiae) and Nicotiana benthamiana, we demonstrate that CYP706A3 is active on TPS11 products and also further oxidizes its own primary oxidation products. Analysis of headspace and soluble metabolites in cyp706a3 and 35S:CYP706A3 mutants indicate that CYP706A3-mediated metabolism largely suppresses sesquiterpene and most monoterpene emissions from opening flowers, and generates terpene oxides that are retained in floral tissues. In flower buds, the combined expression of TPS11 and CYP706A3 also suppresses volatile emissions and generates soluble sesquiterpene oxides. Florivory assays with the Brassicaceae specialist Plutella xylostella demonstrate that insect larvae avoid feeding on buds expressing CYP706A3 and accumulating terpene oxides. Composition of the floral microbiome appears also to be modulated by CYP706A3 expression. TPS11 and CYP706A3 simultaneously evolved within Brassicaceae and form the most versatile functional gene cluster described in higher plants so far.plantcell;31/12/2947/FX1F1fx1.
Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/metabolismo , Terpenos/antagonistas & inhibidores , Transferasas Alquil y Aril/genética , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Flores/genética , Flores/microbiología , Expresión Génica , Larva , Microbiota , Modelos Moleculares , Simulación del Acoplamiento Molecular , Monoterpenos/metabolismo , Mariposas Nocturnas , Familia de Multigenes , Filogenia , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Nicotiana/metabolismo , Levaduras/metabolismoRESUMEN
In plants, phenylalanine biosynthesis occurs via two compartmentally separated pathways. Overexpression of petunia chorismate mutase 2 (PhCM2), which catalyzes the committed step of the cytosolic pathway, increased flux in cytosolic phenylalanine biosynthesis, but paradoxically decreased the overall levels of phenylalanine and phenylalanine-derived volatiles. Concomitantly, the levels of auxins, including indole-3-acetic acid and its precursor indole-3-pyruvic acid, were elevated. Biochemical and genetic analyses revealed the existence of metabolic crosstalk between the cytosolic phenylalanine biosynthesis and tryptophan-dependent auxin biosynthesis mediated by an aminotransferase that uses a cytosolic phenylalanine biosynthetic pathway intermediate, phenylpyruvate, as an amino acceptor for auxin formation.
Asunto(s)
Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Fenilalanina/biosíntesis , Vías Biosintéticas/genética , Citosol/metabolismo , Indoles , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Plantas/metabolismo , TriptófanoRESUMEN
Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.
Asunto(s)
Petunia , Compuestos Orgánicos Volátiles , Acetilación , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Plants synthesize volatile organic compounds (VOCs) to attract pollinators and beneficial microorganisms, to defend themselves against herbivores and pathogens, and for plant-plant communication. In general, VOCs accumulate in and are emitted from the tissue of their biosynthesis. However, using biochemical and reverse genetic approaches, we demonstrate a new physiological phenomenon: inter-organ aerial transport of VOCs via natural fumigation. Before petunia flowers open, a tube-specific terpene synthase produces sesquiterpenes, which are released inside the buds and then accumulate in the stigma, potentially defending the developing stigma from pathogens. These VOCs also affect reproductive organ development and seed yield, which are previously unknown functions of terpenoid compounds.
Asunto(s)
Flores/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Flores/química , Estructura Molecular , Compuestos Orgánicos Volátiles/químicaRESUMEN
In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.
Asunto(s)
Clorofila/biosíntesis , Geraniltranstransferasa/metabolismo , Complejos Multiproteicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Clorofila/genética , Geraniltranstransferasa/genética , Complejos Multiproteicos/genética , Oryza/genética , Proteínas de Plantas/genética , Tilacoides/genéticaRESUMEN
Peroxisomal ß-oxidative degradation of compounds is a common metabolic process in eukaryotes. Reported benzoyl-coenzyme A (BA-CoA) thioesterase activity in peroxisomes from petunia flowers suggests that, like mammals and fungi, plants contain auxiliary enzymes mediating ß-oxidation. Here we report the identification of Petunia hybrida thioesterase 1 (PhTE1), which catalyzes the hydrolysis of aromatic acyl-CoAs to their corresponding acids in peroxisomes. PhTE1 expression is spatially, developmentally and temporally regulated and exhibits a similar pattern to known benzenoid metabolic genes. PhTE1 activity is inhibited by free coenzyme A (CoA), indicating that PhTE1 is regulated by the peroxisomal CoA pool. PhTE1 downregulation in petunia flowers led to accumulation of BA-CoA with increased production of benzylbenzoate and phenylethylbenzoate, two compounds which rely on the presence of BA-CoA precursor in the cytoplasm, suggesting that acyl-CoAs can be exported from peroxisomes. Furthermore, PhTE1 downregulation resulted in increased pools of cytoplasmic phenylpropanoid pathway intermediates, volatile phenylpropenes, lignin and anthocyanins. These results indicate that PhTE1 influences (i) intraperoxisomal acyl-CoA/CoA levels needed to carry out ß-oxidation, (ii) efflux of ß-oxidative products, acyl-CoAs and free acids, from peroxisomes, and (iii) flux distribution within the benzenoid/phenylpropanoid metabolic network. Thus, this demonstrates that plant thioesterases play multiple auxiliary roles in peroxisomal ß-oxidative metabolism.
Asunto(s)
Ácido Benzoico/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Tioléster Hidrolasas/metabolismo , Coenzima A/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidrólisis , Oxidación-Reducción , Peroxisomas/genética , Peroxisomas/metabolismo , Petunia/genética , Petunia/crecimiento & desarrollo , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especificidad por Sustrato , Tioléster Hidrolasas/genéticaRESUMEN
The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.