RESUMEN
A series of D-π-A, D-π-D'-π-A, D-π-A'-π-A nonlinear optical chromophores with vinylene π-electron bridges or bridges with π-deficient/π-excessive heterocyclic moieties along with the corresponding precursors D-vinylene, D-π-D', D'-π-A, D-π-A' and A'-π-A are synthesized and studied both experimentally and computationally. The effect of the heterocycle in the π-electron bridge on the oxidation/reduction potentials and the energy gap (ΔEel ) is investigated in detail. The properties of the D-π-A'(D')-π-A chromophores are shown to correlate with those of building blocks: the oxidation potential is determined by the D-vinylene, and the reduction potential is determined by A'(D')-π-A truncated compounds. The contribution of the acceptor to the oxidation potential of chromophores in comparison with those of the precursors was estimated and analyzed in terms of electronic communication between the end groups. A good correlation between the ΔEel and the chromophores' first hyperpolarizability is revealed.
RESUMEN
Fullerenyltriazoles were synthesized by the interaction of azidofullerene with terminal acetylenes, in which the heterocyclic fragment is directly attached to the fullerene core. The electrochemical studies of the synthesized triazole-containing fullerenes have proved that the potentials of the first reduction peaks are shifted to a less cathodic region compared to unmodified C60. According to theoretical calculations, synthesized fullerene C60 derivatives can be considered as promising acceptor components of organic solar cells.
RESUMEN
Nickel anions [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2- were prepared by the formal addition of 3 and 4 equiv, respectively, of AgCF3 to [(dme)NiBr2] in the presence of the [PPh4]+ counterion. Detailed insights into the electronic properties of these new compounds were obtained through the use of density functional theory (DFT) calculations, spectroscopy-oriented configuration interaction (SORCI) calculations, X-ray absorption spectroscopy, and cyclic voltammetry. The data collectively show that trifluoromethyl complexes of nickel, even in the most common oxidation state of nickel(II), are highly covalent systems whereby a hole is distributed on the trifluoromethyl ligands, surprisingly rendering the metal to a physically more reduced state. In the cases of [(MeCN)Ni(CF3)3]- and [Ni(CF3)4]2-, these complexes are better physically described as d9 metal complexes. [(MeCN)Ni(CF3)3]- is electrophilic and reacts with other nucleophiles such as phenoxide to yield the unsupported [(PhO)Ni(CF3)3]2- salt, revealing the broader potential of [(MeCN)Ni(CF3)3]- in the development of "ligandless" trifluoromethylations at nickel. Proof-in-principle experiments show that the reaction of [(MeCN)Ni(CF3)3]- with an aryl iodonium salt yields trifluoromethylated arene, presumably via a high-valent, unsupported, and formal organonickel(IV) intermediate. Evidence of the feasibility of such intermediates is provided with the structurally characterized [PPh4]2[Ni(CF3)4(SO4)], which was derived through the two-electron oxidation of [Ni(CF3)4]2-.
RESUMEN
An efficient preparative method was developed for the synthesis of previously unreported fullerenylstyrenes based on the reaction of C60 fullerene with terminal acetylenes and EtMgBr in the presence of Ti(Oi-Pr)4. The voltammetric curves of the prepared fullerenylstyrenes were studied, and good prospects for their application as acceptor materials for bulk heterojunction solar cell were demonstrated.
RESUMEN
New well-defined, paramagnetic nickel complexes have been prepared and characterized by X-ray crystallography. The complexes were found to be active for the cross-coupling of alkyl electrophiles (especially ethyl 2-bromobutyrate) with alkyl Grignard reagents. The ligand architecture in these new complexes could potentially be rendered chiral, opening up future possibilities for performing asymmetric cross-coupling reactions.
Asunto(s)
Aminofenoles/síntesis química , Complejos de Coordinación/síntesis química , Níquel/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación MolecularRESUMEN
The deprotonation of N-2,6-diisopropylphenyl-substituted benzoxazolium tetrafluoroborate 1 with NaH results in the formation of electron-rich diaminodioxaethylene 2. The radical cation salt 2·+·BF4- is found to be an intermediate product in the redox reaction leading from 1 to 2.
RESUMEN
A series of diverse binuclear and mononuclear cyclometalated palladium(ii) complexes of different structure was investigated by electrochemical techniques combined with density functional theory (DFT) calculations. The studies including cyclic and differential pulse voltammetry, X-ray structure analysis and quantum chemical calculations revealed a regularity of the complexes oxidation potential on the metal-metal distance in the complexes: the larger Pd-Pd distance, the higher oxidation potentials. The reduction potentials feature unusually high negative values while no correlation depending on the structure could be observed. These results are in a good agreement with the electron density distribution in the complexes. Additionally, ESR data obtained for the complexes upon oxidation is reported.
RESUMEN
Ni-catalyzed electroreductive olefin perfluoroalkylation affords both monomeric and dimeric products depending on the reaction media. Recycling of the catalyst can be achieved by immobilization of a (bpy)NiBr2 complex on silica nanoparticles decorated with anchoring amino-groups. Switching the homogeneous and heterogeneous catalysts is found to be one more factor to control the product ratio. This catalytic technique is both green and atom economical and combines the advantages of nanoheterogeneous catalysis and electrocatalysis.
RESUMEN
Electrocatalytic generation of nickel catalysts in low oxidation states by reduction of nickel complexes with various ligands (2,2'-bipyridine, 2,2':6',2''-terpyridine, (S,S)-2,6-bis(4-phenyl-2-oxazolin-2-yl)-pyridine) in the presence of olefinic substrates and fluoroalkyl halides leads to new organic products derived from addition-dimerization processes. Due to the presence of two stereocenters in the dimerization products two diastereomers were characterized by a variety of analytical techniques including multi-dimensional NMR methods and X-ray single crystal diffraction. The formation of dimers was prevented by the inclusion of the hydrogen atom donor tributyltin hydride. The cyclic voltammetry study of selected nickel complexes along with fluoroalkyl halides demonstrated that Ni(I)L is the active form of the catalyst.