Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146589

RESUMEN

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Humanos , Sustitución de Aminoácidos , Hiperamonemia/etiología , Hiperamonemia/genética , Mutación Missense/genética , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
2.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37812589

RESUMEN

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Asunto(s)
Encefalopatías , Microcefalia , Humanos , Niño , Saccharomyces cerevisiae/genética , Encefalopatías/genética , Microcefalia/genética , Genotipo , Serina
3.
Yeast ; 39(6-7): 354-362, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35706372

RESUMEN

Meiotic mapping, a linkage-based method for analyzing the recombinant progeny of a cross, has long been a cornerstone of genetic research. The yeast Saccharomyces cerevisiae is a powerful system because it is possible to isolate and cultivate the four products (spores) of a single meiotic event. However, the throughput of this process has historically been limited by the process of identifying tetrads in a heterogeneous population of vegetative cells, tetrads, and dyads followed by manual separation (dissection) of the spores contained in a tetrad. To date, methods that facilitate high throughput characterization and isolation of meiotic progeny have relied on genetic engineering. Here, we characterize the ability of the fluorescent dye DiBAC4 (5) to stain yeast tetrads and dyads as well as to adhere to spores following bulk tetrad disruption. Applications include quantitative assays of sporulation rates and efficiency by flow cytometry as well as enrichment of intact tetrads, dyads, or disrupted spores by fluorescence-activated cell sorting  in strains that have not been genetically modified.


Asunto(s)
Meiosis , Saccharomyces cerevisiae , Citometría de Flujo/métodos , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética
4.
PLoS Biol ; 17(3): e3000147, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30835725

RESUMEN

Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.


Asunto(s)
Poliploidía , Saccharomyces cerevisiae/genética , Asia , Cerveza , Europa (Continente) , Fermentación/fisiología , Haplotipos/genética , Saccharomyces cerevisiae/clasificación , Vino
5.
PLoS Genet ; 15(5): e1008137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31091232

RESUMEN

When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.


Asunto(s)
Candida albicans/genética , Candidiasis Bucal/genética , Orofaringe/microbiología , Animales , Candida albicans/metabolismo , Candidiasis/genética , Modelos Animales de Enfermedad , Células Epiteliales , Masculino , Ratones , Ratones Endogámicos BALB C , Neutrófilos , Fenotipo , Trisomía/genética , Virulencia
6.
J Inherit Metab Dis ; 43(4): 758-769, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32077105

RESUMEN

Defects in serine biosynthesis resulting from loss of function mutations in PHGDH, PSAT1, and PSPH cause a set of rare, autosomal recessive diseases known as Neu-Laxova syndrome (NLS) or serine-deficiency disorders. The diseases present with a broad range of phenotypes including lethality, severe neurological manifestations, seizures, and intellectual disability. However, because L-serine supplementation, especially if started prenatally, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is medically actionable. Here, we describe a functional assay that leverages the evolutionary conservation of an enzyme in the serine biosynthesis pathway, phosphoserine aminotransferase, and the ability of the human protein-coding sequence (PSAT1) to functionally replace its yeast ortholog (SER1). Results from our quantitative, yeast-based assay agree well with clinical annotations and expectations based on the disease literature. Using this assay, we have measured the functional impact of the 199 PSAT1 variants currently listed in ClinVar, gnomAD, and the literature. We anticipate that the assay could be used to comprehensively assess the functional impact of all SNP-accessible amino acid substitution mutations in PSAT1, a resource that could aid variant interpretation and identify potential NLS carriers.


Asunto(s)
Anomalías Múltiples/genética , Encefalopatías/genética , Retardo del Crecimiento Fetal/genética , Ictiosis/genética , Deformidades Congénitas de las Extremidades/genética , Microcefalia/genética , Fosfoglicerato-Deshidrogenasa/genética , Anomalías Múltiples/metabolismo , Encefalopatías/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Humanos , Ictiosis/metabolismo , Deformidades Congénitas de las Extremidades/metabolismo , Microcefalia/metabolismo , Mutación Missense , Fenotipo , Fosfoglicerato-Deshidrogenasa/deficiencia , Saccharomyces cerevisiae/metabolismo , Serina/biosíntesis
7.
Nat Methods ; 10(7): 671-5, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666411

RESUMEN

Tetrad analysis has been a gold-standard genetic technique for several decades. Unfortunately, the need to manually isolate, disrupt and space tetrads has relegated its application to small-scale studies and limited its integration with high-throughput DNA sequencing technologies. We have developed a rapid, high-throughput method, called barcode-enabled sequencing of tetrads (BEST), that uses (i) a meiosis-specific GFP fusion protein to isolate tetrads by FACS and (ii) molecular barcodes that are read during genotyping to identify spores derived from the same tetrad. Maintaining tetrad information allows accurate inference of missing genetic markers and full genotypes of missing (and presumably nonviable) individuals. An individual researcher was able to isolate over 3,000 yeast tetrads in 3 h, an output equivalent to that of almost 1 month of manual dissection. BEST is transferable to other microorganisms for which meiotic mapping is significantly more laborious.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , ADN de Hongos/genética , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Meiosis/genética , Saccharomyces cerevisiae/genética
8.
Proc Natl Acad Sci U S A ; 110(30): 12367-72, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23812752

RESUMEN

Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes.


Asunto(s)
Aneuploidia , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos , Dosificación de Gen , Fenotipo
9.
Yeast ; 31(5): 167-78, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24610064

RESUMEN

Puromycin is an aminonucleoside antibiotic with structural similarity to aminoacyl tRNA. This structure allows the drug to bind the ribosomal A site and incorporate into nascent polypeptides, causing chain termination, ribosomal subunit dissociation and widespread translational arrest at high concentrations. In contrast, at sufficiently low concentrations, puromycin incorporates primarily at the C-terminus of proteins. While a number of techniques utilize puromycin incorporation as a tool for probing translational activity in vivo, these methods cannot be applied in yeasts that are insensitive to puromycin. Here, we describe a mutant strain of the yeast Saccharomyces cerevisiae that is sensitive to puromycin and characterize the cellular response to the drug. Puromycin inhibits the growth of yeast cells mutant for erg6∆, pdr1∆ and pdr3∆ (EPP) on both solid and liquid media. Puromycin also induces the aggregation of the cytoplasmic processing body component Edc3 in the mutant strain. We establish that puromycin is rapidly incorporated into yeast proteins and test the effects of puromycin on translation in vivo. This study establishes the EPP strain as a valuable tool for implementing puromycin-based assays in yeast, which will enable new avenues of inquiry into protein production and maturation.


Asunto(s)
Antifúngicos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Puromicina/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
BMC Genomics ; 14: 918, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24365393

RESUMEN

BACKGROUND: Systems biology experiments studying different topics and organisms produce thousands of data values across different types of genomic data. Further, data mining analyses are yielding ranked and heterogeneous results and association networks distributed over the entire genome. The visualization of these results is often difficult and standalone web tools allowing for custom inputs and dynamic filtering are limited. RESULTS: We have developed POMO (http://pomo.cs.tut.fi), an interactive web-based application to visually explore omics data analysis results and associations in circular, network and grid views. The circular graph represents the chromosome lengths as perimeter segments, as a reference outer ring, such as cytoband for human. The inner arcs between nodes represent the uploaded network. Further, multiple annotation rings, for example depiction of gene copy number changes, can be uploaded as text files and represented as bar, histogram or heatmap rings. POMO has built-in references for human, mouse, nematode, fly, yeast, zebrafish, rice, tomato, Arabidopsis, and Escherichia coli. In addition, POMO provides custom options that allow integrated plotting of unsupported strains or closely related species associations, such as human and mouse orthologs or two yeast wild types, studied together within a single analysis. The web application also supports interactive label and weight filtering. Every iterative filtered result in POMO can be exported as image file and text file for sharing or direct future input. CONCLUSIONS: The POMO web application is a unique tool for omics data analysis, which can be used to visualize and filter the genome-wide networks in the context of chromosomal locations as well as multiple network layouts. With the several illustration and filtering options the tool supports the analysis and visualization of any heterogeneous omics data analysis association results for many organisms. POMO is freely available and does not require any installation or registration.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Biología de Sistemas , Internet
11.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36711904

RESUMEN

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

12.
PLoS Genet ; 5(1): e1000358, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19180192

RESUMEN

Genome-wide RNA expression data provide a detailed view of an organism's biological state; hence, a dataset measuring expression variation between genetically diverse individuals (eQTL data) may provide important insights into the genetics of complex traits. However, with data from a relatively small number of individuals, it is difficult to distinguish true causal polymorphisms from the large number of possibilities. The problem is particularly challenging in populations with significant linkage disequilibrium, where traits are often linked to large chromosomal regions containing many genes. Here, we present a novel method, Lirnet, that automatically learns a regulatory potential for each sequence polymorphism, estimating how likely it is to have a significant effect on gene expression. This regulatory potential is defined in terms of "regulatory features"-including the function of the gene and the conservation, type, and position of genetic polymorphisms-that are available for any organism. The extent to which the different features influence the regulatory potential is learned automatically, making Lirnet readily applicable to different datasets, organisms, and feature sets. We apply Lirnet both to the human HapMap eQTL dataset and to a yeast eQTL dataset and provide statistical and biological results demonstrating that Lirnet produces significantly better regulatory programs than other recent approaches. We demonstrate in the yeast data that Lirnet can correctly suggest a specific causal sequence variation within a large, linked chromosomal region. In one example, Lirnet uncovered a novel, experimentally validated connection between Puf3-a sequence-specific RNA binding protein-and P-bodies-cytoplasmic structures that regulate translation and RNA stability-as well as the particular causative polymorphism, a SNP in Mkt1, that induces the variation in the pathway.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo , Programas Informáticos , Algoritmos , Bases de Datos de Ácidos Nucleicos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Levaduras/genética
13.
Sci Data ; 9(1): 216, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581201

RESUMEN

Baker's yeast (Saccharomyces cerevisiae) is a model organism for studying the morphology that emerges at the scale of multi-cell colonies. To look at how morphology develops, we collect a dataset of time-lapse photographs of the growth of different strains of S. cerevisiae. We discuss the general statistical challenges that arise when using time-lapse photographs to extract time-dependent features. In particular, we show how texture-based feature engineering and representative clustering can be successfully applied to categorize the development of yeast colony morphology using our dataset. The Local binary pattern (LBP) from image processing is used to score the surface texture of colonies. This texture score develops along a smooth trajectory during growth. The path taken depends on how the morphology emerges. A hierarchical clustering of the colonies is performed according to their texture development trajectories. The clustering method is designed for practical interpretability; it obtains the best representative colony image for any hierarchical cluster.


Asunto(s)
Saccharomyces cerevisiae , Procesamiento de Imagen Asistido por Computador , Imagen de Lapso de Tiempo
14.
BMC Bioinformatics ; 11: 248, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20465797

RESUMEN

BACKGROUND: Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. RESULTS: To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. CONCLUSIONS: These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Microscopía Fluorescente/métodos , Algoritmos , Línea Celular Tumoral , Células Cultivadas/ultraestructura , Humanos , Sensibilidad y Especificidad
15.
Anal Chem ; 82(24): 10110-5, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21090631

RESUMEN

Microribonucleic acids (miRNAs) have been linked with various regulatory functions and disorders, such as cancers and heart diseases. They, therefore, present an important target for detection technologies for future medical diagnostics. We report here a novel method for rapid and sensitive miRNA detection and quantitation using surface plasmon resonance (SPR) sensor technology and a DNA*RNA antibody-based assay. The approach takes advantage of a novel high-performance portable SPR sensor instrument for spectroscopy of surface plasmons based on a special diffraction grating called a surface plasmon coupler and disperser (SPRCD). The surface of the grating is functionalized with thiolated DNA oligonucleotides which specifically capture miRNA from a liquid sample without amplification. Subsequently, an antibody that recognizes DNA*RNA hybrids is introduced to bind to the DNA*RNA complex and enhance sensor response to the captured miRNA. This approach allows detection of miRNA in less than 30 min at concentrations down to 2 pM with an absolute amount at high attomoles. The methodology is evaluated for analysis of miRNA from mouse liver tissues and is found to yield results which agree well with those provided by the quantitative polymerase chain reaction (qPCR).


Asunto(s)
Técnicas Biosensibles/métodos , MicroARNs/análisis , Resonancia por Plasmón de Superficie/métodos , Animales , Anticuerpos , ADN , Límite de Detección , Hígado/química , Métodos , Ratones , Hibridación de Ácido Nucleico/inmunología , ARN
16.
Front Genet ; 11: 580484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33456446

RESUMEN

There is a growing interest in standardizing gene-disease associations for the purpose of facilitating the proper classification of variants in the context of Mendelian diseases. One key line of evidence is the independent observation of pathogenic variants in unrelated individuals with similar phenotypes. Here, we expand on our previous effort to exploit the power of autozygosity to produce homozygous pathogenic variants that are otherwise very difficult to encounter in the homozygous state due to their rarity. The identification of such variants in genes with only tentative associations to Mendelian diseases can add to the existing evidence when observed in the context of compatible phenotypes. In this study, we report 20 homozygous variants in 18 genes (ADAMTS18, ARNT2, ASTN1, C3, DMBX1, DUT, GABRB3, GM2A, KIF12, LOXL3, NUP160, PTRHD1, RAP1GDS1, RHOBTB2, SIGMAR1, SPAST, TENM3, and WASHC5) that satisfy the ACMG classification for pathogenic/likely pathogenic if the involved genes had confirmed rather than tentative links to diseases. These variants were selected because they were truncating, founder with compelling segregation or supported by robust functional assays as with the DUT variant that we present its validation using yeast model. Our findings support the previously reported disease associations for these genes and represent a step toward their confirmation.

17.
G3 (Bethesda) ; 9(7): 2071-2088, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31109921

RESUMEN

We describe an information-theory-based method and associated software for computationally identifying sister spores derived from the same meiotic tetrad. The method exploits specific DNA sequence features of tetrads that result from meiotic centromere and allele segregation patterns. Because the method uses only the genomic sequence, it alleviates the need for tetrad-specific barcodes or other genetic modifications to the strains. Using this method, strains derived from randomly arrayed spores can be efficiently grouped back into tetrads.


Asunto(s)
Biología Computacional/métodos , Programas Informáticos , Levaduras/fisiología , Alelos , Segregación Cromosómica , Regulación Fúngica de la Expresión Génica , Meiosis , Recombinación Genética , Reproducibilidad de los Resultados , Esporas Fúngicas
18.
BMC Mol Cell Biol ; 20(1): 59, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856706

RESUMEN

BACKGROUND: Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell-cell and metabolic coupling lead to functionally optimized structures is still limited. RESULTS: Here, we present a data-driven spatial framework to computationally investigate the development of yeast colonies as such a multicellular structure in dependence on metabolic capacity. For this purpose, we first developed and parameterized a dynamic cell state and growth model for yeast based on on experimental data from homogeneous liquid media conditions. The inferred model is subsequently used in a spatially coarse-grained model for colony development to investigate the effect of metabolic coupling by calibrating spatial parameters from experimental time-course data of colony growth using state-of-the-art statistical techniques for model uncertainty and parameter estimations. The model is finally validated by independent experimental data of an alternative yeast strain with distinct metabolic characteristics and illustrates the impact of metabolic coupling for structure formation. CONCLUSIONS: We introduce a novel model for yeast colony formation, present a statistical methodology for model calibration in a data-driven manner, and demonstrate how the established model can be used to generate predictions across scales by validation against independent measurements of genetically distinct yeast strains.


Asunto(s)
Simulación por Computador , Saccharomyces cerevisiae/crecimiento & desarrollo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Análisis Espacio-Temporal
19.
G3 (Bethesda) ; 8(1): 239-251, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29138237

RESUMEN

Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Polimorfismo Genético , Saccharomyces cerevisiae/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Transaminasas/genética , Bebidas Alcohólicas/análisis , Cafeína/farmacología , Cobre/farmacología , Medios de Cultivo/farmacología , Etanol/farmacología , Fermentación , Humanos , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sales (Química)/farmacología , Sirolimus/farmacología , ATPasa Intercambiadora de Sodio-Potasio/deficiencia , Transaminasas/deficiencia
20.
Genetics ; 209(3): 725-741, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29724862

RESUMEN

In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.


Asunto(s)
Candida albicans/fisiología , Candidiasis/microbiología , ADN de Hongos/genética , Variación Genética , Boca/microbiología , Aneuploidia , Animales , Candida albicans/genética , Candida albicans/aislamiento & purificación , Proteínas Fúngicas/genética , Galactoquinasa/genética , Frecuencia de los Genes , Genotipo , Interacciones Huésped-Patógeno , Pérdida de Heterocigocidad , Masculino , Ratones , Fenotipo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA