Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199568

RESUMEN

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Asunto(s)
Proteínas del Dominio Armadillo , Proteínas del Citoesqueleto , Neuronas , Animales , Ratones , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Calpaína/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Transducción de Señal
2.
Cell ; 138(1): 172-85, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596243

RESUMEN

The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an evolutionarily conserved DNA binding domain homologous to a yeast transcription factor. Knockdown of MRF in oligodendrocytes by RNA interference prevents expression of most CNS myelin genes; conversely, overexpression of MRF within cultured oligodendrocyte progenitors or the chick spinal cord promotes expression of myelin genes. In mice lacking MRF within the oligodendrocyte lineage, premyelinating oligodendrocytes are generated but display severe deficits in myelin gene expression and fail to myelinate. These mice display severe neurological abnormalities and die because of seizures during the third postnatal week. These findings establish MRF as a critical transcriptional regulator essential for oligodendrocyte maturation and CNS myelination.


Asunto(s)
Encéfalo/citología , Regulación de la Expresión Génica , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Ratones , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología
3.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751752

RESUMEN

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Asunto(s)
Biomarcadores/metabolismo , Glicosaminoglicanos/aislamiento & purificación , Iduronato Sulfatasa/genética , Mucopolisacaridosis II/diagnóstico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cromatografía Liquida , Dermatán Sulfato/farmacología , Disacáridos/química , Modelos Animales de Enfermedad , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacología , Humanos , Iduronato Sulfatasa/metabolismo , Ratones , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Espectrometría de Masas en Tándem
4.
Ecology ; 98(1): 125-137, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27935029

RESUMEN

Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.


Asunto(s)
Avicennia/crecimiento & desarrollo , Cambio Climático , Agua de Mar/química , Temperatura , Humedales , Océanos y Mares
5.
BMC Neurosci ; 17: 16, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27103572

RESUMEN

BACKGROUND: Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. RESULTS: We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. CONCLUSIONS: We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.


Asunto(s)
Axones/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/farmacología , Animales , Axones/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/fisiología , Medios de Cultivo Condicionados/farmacología , Técnica del Anticuerpo Fluorescente/métodos , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Ratas
6.
Glia ; 63(5): 768-79, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25557204

RESUMEN

Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/enzimología , Células Madre/efectos de los fármacos , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Citometría de Flujo , Adyuvante de Freund/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Glicoproteína Mielina-Oligodendrócito/toxicidad , Técnicas de Cultivo de Órganos , Fragmentos de Péptidos/toxicidad , Receptores de Interleucina-17/deficiencia , Receptores de Interleucina-17/genética , Células Madre/fisiología
7.
Mol Cell Neurosci ; 50(1): 45-57, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22472204

RESUMEN

Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Triyodotironina/farmacología , Animales , Diferenciación Celular/genética , Cuprizona/farmacología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño , Ratas , Factores de Transcripción/metabolismo
8.
Mol Cell Neurosci ; 49(2): 120-6, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22044765

RESUMEN

The SCN8A gene encodes the voltage-gated sodium channel Na(v)1.6, a major channel in neurons of the CNS and PNS. SCN8A contains two alternative exons,18N and 18A, that exhibit tissue specific splicing. In brain, the major SCN8A transcript contains exon 18A and encodes the full-length sodium channel. In other tissues, the major transcript contains exon 18N and encodes a truncated protein, due to the presence of an in-frame stop codon. Selection of exon 18A is therefore essential for generation of a functional channel protein, but the proteins involved in this selection have not been identified. Using a 2.6 kb Scn8a minigene containing exons 18N and 18A, we demonstrate that co-transfection with Fox-1 or Fox-2 initiates inclusion of exon 18A. This effect is dependent on the consensus Fox binding site located 28 bp downstream of exon 18A. We examined the alternative splicing of human SCN8A and found that the postnatal switch to exon 18A is completed later than 10 months of age. In purified cell populations, transcripts containing exon 18A predominate in neurons but are not present in oligodendrocytes or astrocytes. Transcripts containing exon 18N appear to be degraded by nonsense-mediated decay in HEK cells. Our data indicate that RBFOX proteins contribute to the cell-specific expression of Na(v)1.6 channels in mature neurons.


Asunto(s)
Empalme Alternativo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Canales de Sodio/genética , Animales , Sitios de Unión/genética , Línea Celular , Células Cultivadas , Exones/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Ratas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Canales de Sodio/metabolismo
9.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635496

RESUMEN

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Microglía , Barrera Hematoencefálica , Distribución Tisular , Anticuerpos , Encéfalo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Receptores Inmunológicos/genética
10.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35226042

RESUMEN

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Asunto(s)
Iduronato Sulfatasa , Mucopolisacaridosis II , Receptores de Transferrina , Proteínas Recombinantes de Fusión , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Iduronato Sulfatasa/metabolismo , Iduronato Sulfatasa/farmacología , Lisosomas/metabolismo , Ratones , Mucopolisacaridosis II/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Distribución Tisular
11.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690868

RESUMEN

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/patología , Receptores de GABA/metabolismo
12.
Dev Neurosci ; 33(1): 14-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21346322

RESUMEN

MicroRNAs (miRNAs) are a class of small (approx. 22 nt) noncoding RNAs that are capable of post-transcriptionally silencing mRNAs that contain sequences complementary to the miRNAs' 7- to 8-bp 'seed' sequence. As single miRNAs are often predicted to target up to hundreds of individual transcripts, miRNAs are able to broadly affect the overall protein expression state of the cell. This can translate into global effects on cellular health and differentiation state. Recently, several reports have identified crucial roles for miRNAs in controlling the production, differentiation, and health of myelinating cells of the mammalian nervous system. In this review, we will discuss how individual miRNAs regulate these various processes, and also how miRNA production in general is required for several stages of myelin generation and maintenance.


Asunto(s)
Diferenciación Celular/genética , MicroARNs/metabolismo , Oligodendroglía/fisiología , Células de Schwann/fisiología , Neoplasias Encefálicas/genética , Diferenciación Celular/fisiología , ARN Helicasas DEAD-box/metabolismo , Expresión Génica , Síndrome de Guillain-Barré/genética , Humanos , MicroARNs/genética , Vaina de Mielina/metabolismo , Ribonucleasa III/metabolismo
13.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622797

RESUMEN

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Terapia de Reemplazo Enzimático/métodos , Iduronato Sulfatasa/administración & dosificación , Mucopolisacaridosis II/tratamiento farmacológico , Receptores de Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Glicosaminoglicanos/metabolismo , Iduronato Sulfatasa/genética , Memoria/efectos de los fármacos , Ratones , Ratones Noqueados , Destreza Motora/efectos de los fármacos , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/metabolismo , Mucopolisacaridosis II/fisiopatología , Fenotipo , Filtrado Sensorial/efectos de los fármacos , Esqueleto/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Transcitosis
14.
Ann Clin Transl Neurol ; 7(7): 1103-1116, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515902

RESUMEN

OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from ≥2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Citocinas/metabolismo , Progresión de la Enfermedad , Proteínas de Neurofilamentos/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Bancos de Muestras Biológicas , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Proteína C9orf72/genética , Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Pronóstico
15.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31902528

RESUMEN

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Asunto(s)
Encéfalo/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitosis/genética , Receptores Inmunológicos/genética , Acetil-CoA C-Acetiltransferasa/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ésteres del Colesterol/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Células Madre Pluripotentes Inducidas , Metabolismo de los Lípidos/genética , Lipidómica , Receptores X del Hígado/agonistas , Ratones , Ratones Noqueados , Ratones Noqueados para ApoE , RNA-Seq
16.
Sci Transl Med ; 12(545)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461331

RESUMEN

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Asunto(s)
Barrera Hematoencefálica , Iduronato Sulfatasa , Animales , Encéfalo , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Lisosomas , Ratones
17.
J Neurosci ; 28(33): 8294-305, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18701692

RESUMEN

One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, cholera toxin beta (CTB) immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope CTB, and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain.


Asunto(s)
Encéfalo/citología , Separación Celular/métodos , Células Endoteliales/citología , Neuronas Motoras/citología , Factores de Crecimiento Nervioso/fisiología , Tractos Piramidales/citología , Animales , Transporte Axonal/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Células Cultivadas , Toxina del Cólera/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/genética , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Tractos Piramidales/irrigación sanguínea , Tractos Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 28(45): 11537-49, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987190

RESUMEN

Aspartoacylase (ASPA) is an oligodendrocyte-restricted enzyme that catalyzes the hydrolysis of neuronally derived N-acetylaspartate (NAA) to acetate and aspartic acid. ASPA deficiency leads to the fatal childhood autosomal recessive leukodystrophy Canavan disease (CD). Here we demonstrate that the previously described ENU-induced nur7 mouse mutant is caused by a nonsense mutation, Q193X, in the Aspa gene (Aspa(nur7)). Homozygous Aspa(nur7nur7) mice do not express detectable Aspa protein and display an early-onset spongy degeneration of CNS myelin with increased NAA levels similar to that observed in CD patients. In addition, CNS regions rich in neuronal cell bodies also display vacuolization. Interestingly, distinct myelin rich areas, such as the corpus callosum, optic nerve, and spinal cord white matter appear normal in Aspa(nur7/nur7) mice. Reduced cerebroside synthesis has been demonstrated in CD patients and animal models. To determine the potential relevance of this observation in disease pathogenesis, we generated Aspa(nur7/nur7) mice that were heterozygous for a null allele of the gene that encodes the enzyme UDP-galactose:ceramide galactosyltransferase (Cgt), which is responsible for catalyzing the synthesis of the abundant myelin galactolipids. Despite reduced amounts of cerebrosides, the Aspa(nur7/nur7);Cgt(+/-) mice were not more severely affected than the Aspa(nur7) mutants, suggesting that diminished cerebroside synthesis is not a major contributing factor in disease pathogenesis. Furthermore, we found that myelin degeneration leads to significant axonal loss in the cerebellum of older Aspa(nur7) mutants. This finding suggests that axonal pathology caused by CNS myelin defects may underlie the neurological disabilities that CD patients develop at late stages of the disease.


Asunto(s)
Amidohidrolasas/genética , Enfermedad de Canavan/genética , Sistema Nervioso Central/patología , Codón sin Sentido , Modelos Animales de Enfermedad , Factores de Edad , Animales , Animales Recién Nacidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Axones/patología , Conducta Animal/fisiología , Enfermedad de Canavan/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/ultraestructura , Mapeo Cromosómico/métodos , Progresión de la Enfermedad , Glutamina/genética , Metabolismo de los Lípidos/genética , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , N-Acilesfingosina Galactosiltransferasa/genética , Oligodendroglía/patología , Oligodendroglía/ultraestructura
19.
Neurotherapeutics ; 16(3): 808-827, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30815844

RESUMEN

The development of neuroprotective therapies is a sought-after goal. By screening combinatorial chemical libraries using in vitro assays, we identified the small molecule BN201 that promotes the survival of cultured neural cells when subjected to oxidative stress or when deprived of trophic factors. Moreover, BN201 promotes neuronal differentiation, the differentiation of precursor cells to mature oligodendrocytes in vitro, and the myelination of new axons. BN201 modulates several kinases participating in the insulin growth factor 1 pathway including serum-glucocorticoid kinase and midkine, inducing the phosphorylation of NDRG1 and the translocation of the transcription factor Foxo3 to the cytoplasm. In vivo, BN201 prevents axonal and neuronal loss, and it promotes remyelination in models of multiple sclerosis, chemically induced demyelination, and glaucoma. In summary, we provide a new promising strategy to promote neuroaxonal survival and remyelination, potentially preventing disability in brain diseases.


Asunto(s)
Amidas/uso terapéutico , Axones/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Peptoides/uso terapéutico , Pirrolidinonas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Técnica del Anticuerpo Fluorescente , Glaucoma/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Nervio Óptico/efectos de los fármacos , Proguanil , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Triazinas
20.
J Neurosci ; 27(23): 6185-96, 2007 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-17553990

RESUMEN

The intracellular molecular mechanism that controls the timing of oligodendrocyte differentiation remains unknown. Temple and Raff (1986) previously showed that an oligodendrocyte precursor cell (OPC) can divide a maximum of approximately eight times before its daughter cells simultaneously cease proliferating and differentiate into oligodendrocytes. They postulated that over time the level of an intracellular molecule might synchronously change in each daughter cell, ultimately reaching a level that prohibited additional proliferation. Here, we report the discovery of such a molecule, the cyclin-dependent kinase inhibitor p57(Kip2) (Cdkn1c). We show in vitro that all daughters of a clone of OPCs express similar levels of p57(Kip2), that p57(Kip2) levels increase over time in proliferating OPCs, and that p57(Kip2) levels regulate how many times an OPC can divide before differentiating. These findings reveal a novel part of the mechanism by which OPCs measure time and are likely to extend to similar timers in many other precursor cell types.


Asunto(s)
Relojes Biológicos/fisiología , Diferenciación Celular/fisiología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/fisiología , Líquido Intracelular/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Ratones , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA