Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 243(4): 1490-1505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39021210

RESUMEN

Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Vitis , Vitis/genética , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Oomicetos/patogenicidad , Estudio de Asociación del Genoma Completo , Eliminación de Secuencia , Genes de Plantas , Haplotipos/genética , Eliminación de Gen , Fenotipo
2.
Mol Ecol ; 32(10): 2519-2533, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36932815

RESUMEN

Traditional agrosystems, where humans, crops and microbes have coevolved over long periods, can serve as models to understand the ecoevolutionary determinants of disease dynamics and help the engineering of durably resistant agrosystems. Here, we investigated the genetic and phenotypic relationship between rice (Oryza sativa) landraces and their rice blast pathogen (Pyricularia oryzae) in the traditional Yuanyang terraces of flooded rice paddies in China, where rice landraces have been grown and bred over centuries without significant disease outbreaks. Analyses of genetic subdivision revealed that indica rice plants clustered according to landrace names. Three new diverse lineages of rice blast specific to the Yuanyang terraces coexisted with lineages previously detected at the worldwide scale. Population subdivision in the pathogen population did not mirror pattern of population subdivision in the host. Measuring the pathogenicity of rice blast isolates on landraces revealed generalist life history traits. Our results suggest that the implementation of disease control strategies based on the emergence or maintenance of a generalist lifestyle in pathogens may sustainably reduce the burden of disease in crops.


Asunto(s)
Variación Genética , Oryza , Humanos , Oryza/genética , Fitomejoramiento , Productos Agrícolas , China , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Mol Ecol ; 31(4): 1160-1179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34845779

RESUMEN

Plant pathogens often adapt to plant genetic resistance so characterization of the architecture underlying such an adaptation is required to understand the adaptive potential of pathogen populations. Erosion of banana quantitative resistance to a major leaf disease caused by polygenic adaptation of the causal agent, the fungus Pseudocercospora fijiensis, was recently identified in the northern Caribbean region. Genome scan and quantitative genetics approaches were combined to investigate the adaptive architecture underlying this adaptation. Thirty-two genomic regions showing host selection footprints were identified by pool sequencing of isolates collected from seven plantation pairs of two cultivars with different levels of quantitative resistance. Individual sequencing and phenotyping of isolates from one pair revealed significant and variable levels of correlation between haplotypes in 17 of these regions with a quantitative trait of pathogenicity (the diseased leaf area). The multilocus pattern of haplotypes detected in the 17 regions was found to be highly variable across all the population pairs studied. These results suggest complex adaptive architecture underlying plant pathogen adaptation to quantitative resistance with a polygenic basis, redundancy, and a low level of parallel evolution between pathogen populations. Candidate genes involved in quantitative pathogenicity and host adaptation of P. fijiensis were identified in genomic regions by combining annotation analysis with available biological data.


Asunto(s)
Musa , Enfermedades de las Plantas , Aclimatación , Adaptación Fisiológica/genética , Musa/genética , Musa/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética
4.
Evol Appl ; 13(4): 824-836, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32211070

RESUMEN

Understanding the mechanisms involved in pathogen adaptation to quantitative resistance in plants has a key role to play in establishing durable strategies for resistance deployment, especially in perennial crops. The erosion of quantitative resistance has been recently suspected in Cuba and the Dominican Republic for a major fungal pathogen of such a crop: Pseudocercospora fijiensis, causing black leaf streak disease on banana. This study set out to test whether such erosion has resulted from an adaptation of P. fijiensis populations, and to determine whether or not the adaptation is local. Almost 600 P. fijiensis isolates from Cuba and the Dominican Republic were sampled using a paired-population sampling design on resistant and susceptible banana varieties. A low genetic structure of the P. fijiensis populations was detected in each country using 16 microsatellite markers. Cross-inoculation experiments using isolates from susceptible and resistant cultivars were carried out, measuring a quantitative trait (the diseased leaf area) related to pathogen fitness on three varieties. A further analysis based on those data suggested the existence of a local pattern of adaptation to resistant cultivars in both of the study countries, due to the existence of specific (or genotype by genotype) host-pathogen interactions. However, neither cost nor benefit effects for adapted populations were found on the widely used "Cavendish" banana group. These results highlight the need to study specific host-pathogen interactions and pathogen adaptation on a wide range of quantitative resistance phenotypes in banana, in order to develop durable strategies for resistance deployment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA