Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 300(4): 107132, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432636

RESUMEN

Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.


Asunto(s)
Fenómenos Fisiológicos Celulares , Hemo , Animales , Humanos , Ritmo Circadiano/fisiología , Hemo/metabolismo , Hemoproteínas/metabolismo , Oxidación-Reducción , Transducción de Señal , Espacio Intracelular/metabolismo , Fenómenos Fisiológicos Celulares/fisiología
2.
Physiol Genomics ; 56(2): 113-127, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982169

RESUMEN

Endothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis. Initially, we performed bulk RNA sequencing on ECs from mouse adipose and mesenteric vasculatures after a normal chow (NC) diet or high-fat diet (HFD) and found higher mitochondrial gene expression in adipose ECs compared with mesenteric ECs in both NC and HFD mice. Next, we performed single-cell RNA sequencing and categorized ECs as arterial, capillary, venous, or lymphatic. We found mitochondrial genes to be enriched in adipose compared with mesentery under NC conditions in artery and capillary ECs. After HFD, these genes were decreased in adipose ECs, becoming like mesenteric ECs. Transcription factor analysis revealed that peroxisome proliferator-activated receptor-γ (PPAR-γ) had high specificity in NC adipose artery and capillary ECs. These findings were recapitulated in single-nuclei RNA-sequencing data from human visceral adipose. The sum of these findings suggests that mesenteric and adipose arterial ECs metabolize lipids differently, and the transcriptional phenotype of the vascular beds converges in obesity due to downregulation of PPAR-γ in adipose artery and capillary ECs.NEW & NOTEWORTHY Using bulk and single-cell RNA sequencing on endothelial cells from adipose and mesentery, we found that an obesogenic diet induces a reduction in adipose endothelial oxidative phosphorylation gene expression, resulting in a phenotypic convergence of mesenteric and adipose endothelial cells. Furthermore, we found evidence that PPAR-γ drives this phenotypic shift. Mining of human data sets segregated based on body mass index supported these findings. These data point to novel mechanisms by which obesity induces endothelial dysfunction.


Asunto(s)
Endotelio Vascular , Genes Mitocondriales , Humanos , Ratones , Animales , Endotelio Vascular/metabolismo , Células Endoteliales/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Arterias , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Tejido Adiposo/metabolismo
3.
Nitric Oxide ; 150: 47-52, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097183

RESUMEN

In the vasculature, nitric oxide (NO) is produced in the endothelium by endothelial nitric oxide synthase (eNOS) and is critical for the regulation of blood flow and blood pressure. Blood flow may also be regulated by the formation of nitrite-derived NO catalyzed by hemoproteins under hypoxic conditions. We sought to investigate whether nitrite administration may affect tissue perfusion and systemic hemodynamics in WT and eNOS knockout mice. We found that global eNOS KO mice show decreased tissue perfusion compared to WT mice by using laser speckle contrast imaging. To study both the acute and long-term effects of sodium nitrite (0, 0.1, 1, and 10 mg/kg) on peripheral blood flow and systemic blood pressure, a bolus of nitrite was delivered intraperitoneally every 24 h over 4 consecutive days. We found that nitrite administration resulted in a dose-dependent and acute increase in peripheral blood flow in eNOS KO mice but had no effects in WT mice. The nitrite induced changes in tissue perfusion were transient, as determined by intraindividual comparisons of tissue perfusion 24-h after injection. Accordingly, 10 mg/kg sodium nitrite acutely decreased blood pressure in eNOS KO mice but not in WT mice as determined by invasive Millar catheterization. Interestingly, we found the vasodilatory effects of nitrite to be inversely correlated to baseline tissue perfusion. These results demonstrate the nitrite acutely recovers hypoperfusion and hypertension in global eNOS KO mice and suggest the vasodilatory actions of nitrite are dependent upon tissue hypoperfusion.


Asunto(s)
Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratones , Hemodinámica/efectos de los fármacos , Nitrito de Sodio/farmacología , Masculino , Presión Sanguínea/efectos de los fármacos , Ratones Endogámicos C57BL , Nitritos/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos
4.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R630-R640, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624556

RESUMEN

Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Hidroxiurea/farmacología , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Óxido Nítrico/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Arginasa/metabolismo , Modelos Animales de Enfermedad , Hemoglobina A/genética , Hemoglobina A/metabolismo , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteinuria/tratamiento farmacológico , Proteinuria/genética , Proteinuria/metabolismo
5.
Function (Oxf) ; 5(5)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984993

RESUMEN

Obesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function. Single-cell RNA sequencing (scRNAseq) revealed an enrichment of fatty acid handling machinery in CaECs from high fat diet (HFD) mice, suggesting their specialized role in lipid metabolism. Transmission electron microscopy (TEM) confirmed direct heterocellular contact between CaECs and adipocytes. To model this, we created an in vitro co-culture transwell system to model the heterocellular contact observed with TEM. Contact between ECs and adipocytes in vitro led to upregulation of fatty acid binding protein 4 in response to lipid stimulation, hinting intercellular signaling may be important between ECs and adipocytes. We mined our and others scRNAseq datasets to examine which connexins may be present in adipose capillaries and adipocytes and consistently identified connexin 43 (Cx43) in mouse and humans. Genetic deletion of endothelial Cx43 resulted in increased epididymal fat pad (eWAT) adiposity and dyslipidemia in HFD mice. Consistent with this observation, phosphorylation of Cx43 at serine 368, which closes gap junctions, was increased in HFD mice and lipid-treated ECs. Mice resistant to this post-translational modification, Cx43S368A, were placed on an HFD and were found to have reduced eWAT adiposity and improved lipid profiles. These findings suggest Cx43-mediated heterocellular communication as a possible regulatory mechanism of adipose tissue function.


Asunto(s)
Adipocitos , Adiposidad , Conexina 43 , Células Endoteliales , Uniones Comunicantes , Animales , Ratones , Uniones Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Adipocitos/metabolismo , Células Endoteliales/metabolismo , Humanos , Masculino , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Comunicación Celular , Ratones Endogámicos C57BL , Metabolismo de los Lípidos , Fosforilación , Técnicas de Cocultivo , Tejido Adiposo/metabolismo
6.
Acta Physiol (Oxf) ; 240(9): e14201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39007513

RESUMEN

AIM: We aimed to test the hypothesis that a high-salt diet (HS) impairs NO signaling in kidney microvascular endothelial cells through a histone deacetylase 1 (HDAC1)-dependent mechanism. METHODS: Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or HS (4% NaCl) for 2 weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. RESULTS: We found HS-induced impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS-fed rats to be sufficient to induce impaired NO signaling. This indicates the presence of a humoral factor we termed plasma-derived endothelial dysfunction mediator (PDEM). Pretreatment with the antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. CONCLUSION: We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.


Asunto(s)
Histona Desacetilasa 1 , Riñón , Óxido Nítrico , Ratas Sprague-Dawley , Transducción de Señal , Cloruro de Sodio Dietético , Animales , Masculino , Ratas , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Riñón/metabolismo , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Óxido Nítrico/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289985

RESUMEN

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Asunto(s)
Hipertensión , Factores de Transcripción , Animales , Humanos , Ratones , Diferenciación Celular , Proliferación Celular/fisiología , Conexinas/metabolismo , Peróxido de Hidrógeno/farmacología , Obesidad , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Factores de Transcripción/metabolismo
8.
Hypertension ; 80(2): 416-425, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36448464

RESUMEN

BACKGROUND: Panx1 (pannexin 1) forms high conductance channels that secrete ATP upon stimulation. The role of Panx1 in mediating constriction in response to direct sympathetic nerve stimulation is not known. Additionally, it is unknown how the expression level of Panx1 in smooth muscle cells (SMCs) influences α-adrenergic responses. We hypothesized that the amount of Panx1 in SMCs dictates the levels of sympathetic constriction and blood pressure. METHODS: To test this hypothesis, we used genetically modified mouse models enabling expression of Panx1 in vascular cells to be varied. Electrical field stimulation on isolated arteries and blood pressure were assessed. RESULTS: Genetic deletion of SMC Panx1 prevented constriction by electric field stimulation of sympathetic nerves. Conversely, overexpression of Panx1 in SMCs using a ROSA26 transgenic model increased sympathetic nerve-mediated constriction. Connexin 43 hemichannel inhibitors did not alter constriction. Next, we evaluated the effects of altered SMC Panx1 expression on blood pressure. To do this, we created mice combining a global Panx1 deletion, with ROSA26-Panx1 under the control of an inducible SMC specific Cre (Myh11). This resulted in mice that could express only human Panx1, only in SMCs. After tamoxifen, these mice had increased blood pressure that was acutely decreased by the Panx1 inhibitor spironolactone. Control mice genetically devoid of Panx1 did not respond to spironolactone. CONCLUSIONS: These data suggest Panx1 in SMCs could regulate the extent of sympathetic nerve constriction and blood pressure. The results also show the feasibility humanized Panx1-mouse models to test pharmacological candidates.


Asunto(s)
Espironolactona , Vasoconstricción , Humanos , Ratones , Animales , Espironolactona/farmacología , Sistema Nervioso Simpático/fisiología , Presión Sanguínea/fisiología , Miocitos del Músculo Liso/metabolismo , Conexinas/genética , Conexinas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
bioRxiv ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945391

RESUMEN

Aim: We aimed to identify new mechanisms by which a high salt diet (HS) decreases NO production in kidney microvascular endothelial cells. Specifically, we hypothesized HS impairs NO signaling through a histone deacetylase 1 (HDAC1)-dependent mechanism. Methods: Male Sprague Dawley rats were fed normal salt diet (NS; 0.49% NaCl) or high salt diet (4% NaCl) for two weeks. NO signaling was assessed by measuring L-NAME induced vasoconstriction of the afferent arteriole using the blood perfused juxtamedullary nephron (JMN) preparation. In this preparation, kidneys were perfused with blood from a donor rat on a matching or different diet to that of the kidney donor. Kidney endothelial cells were isolated with magnetic activated cell sorting and HDAC1 activity was measured. Results: We found that HS impaired NO signaling in the afferent arteriole. This was restored by inhibition of HDAC1 with MS-275. Consistent with these findings, HDAC1 activity was increased in kidney endothelial cells. We further found the loss of NO to be dependent upon the diet of the blood donor rather than the diet of the kidney donor and the plasma from HS fed rats to be sufficient to induce dysfunction suggesting a humoral factor, we termed Plasma Derived Endothelial-dysfunction Mediator (PDEM), mediates the endothelial dysfunction. The antioxidants, PEG-SOD and PEG-catalase, as well as the NOS cofactor, tetrahydrobiopterin, restored NO signaling. Conclusion: We conclude that HS activates endothelial HDAC1 through PDEM leading to decreased NO signaling. This study provides novel insights into the molecular mechanisms by which a HS decreases renal microvascular endothelial NO signaling.

10.
Cardiovasc Res ; 118(8): 1885-1903, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34264338

RESUMEN

The histone deacetylases (HDACs) are a family of enzymes that catalyse lysine deacetylation of both histone and non-histone proteins. Here, we review, summarize, and provide perspectives on the literature regarding one such HDAC, HDAC1, in endothelial biology. In the endothelium, HDAC1 mediates the effects of external and environmental stimuli by regulating major endothelial functions such as angiogenesis, inflammatory signalling, redox homeostasis, and nitric oxide signalling. Angiogenesis is most often, but not exclusively, repressed by endothelial HDAC1. The regulation of inflammatory signalling is more complex as HDAC1 promotes or suppresses inflammatory signalling depending upon the environmental stimuli. HDAC1 is protective in models of atherosclerosis where loss of HDAC1 results in increased cytokine and cell adhesion molecule (CAM) abundance. In other models, HDAC1 promotes inflammation by increasing CAMs and repressing claudin-5 expression. Consistently, from many investigations, HDAC1 decreases antioxidant enzyme expression and nitric oxide production in the endothelium. HDAC1 decreases antioxidant enzyme expression through the deacetylation of histones and transcription factors, and also regulates nitric oxide production through regulating both the expression and activity of nitric oxide synthase 3. The HDAC1-dependent regulation of endothelial function through the deacetylation of both histone and non-histone proteins ultimately impacts whole animal physiology and health.


Asunto(s)
Histona Desacetilasa 1 , Óxido Nítrico , Animales , Antioxidantes , Endotelio , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Óxido Nítrico/metabolismo
11.
Compr Physiol ; 12(4): 3833-3867, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35959755

RESUMEN

The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.


Asunto(s)
Células Endoteliales , Músculo Liso Vascular , Comunicación Celular , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Humanos , Músculo Liso Vascular/fisiología , Vasoconstricción/fisiología , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA