Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Radiology ; 301(3): 637-642, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546128

RESUMEN

Background There is an ongoing scientific debate about the degree and clinical importance of gadolinium deposition in the brain and other organs after administration of gadolinium-based contrast agents (GBCAs). While most published data focus on gadolinium deposition in the brain, other organs are rarely investigated. Purpose To compare gadolinium tissue concentrations in various organs 10 weeks after one injection (comparable to a clinically applied dose) of linear and macrocyclic GBCAs in a large-animal model. Materials and Methods In this prospective animal study conducted from March to May 2018, 36 female Swiss-Alpine sheep (age range, 4-10 years) received one injection (0.1 mmol/kg) of macrocyclic GBCAs (gadobutrol, gadoteridol, and gadoterate meglumine), linear GBCAs (gadodiamide and gadobenate dimeglumine), or saline. Ten weeks after injection, sheep were sacrificed and tissues were harvested. Gadolinium concentrations were quantified with inductively coupled plasma mass spectrometry (ICP-MS). Histologic staining was performed. Data were analyzed with nonparametric tests. Results At 10 weeks after injection, linear GBCAs resulted in highest mean gadolinium concentrations in the kidney (502 ng/g [95% CI: 270, 734]) and liver (445 ng/g [95% CI: 202, 687]), while low concentrations were found in the deep cerebellar nuclei (DCN) (30 ng/g [95% CI: 20, 41]). Tissue concentrations of linear GBCAs were three to 21 times higher compared with those of macrocyclic GBCAs. Administered macrocyclic GBCAs resulted in mean gadolinium concentrations of 86 ng/g (95% CI: 31, 141) (P = .08) in the kidney, 21 ng/g (95% CI: 4, 39) (P = .15) in liver tissue, and 10 ng/g (95% CI: 9, 12) (P > .99) in the DCN, which were not significantly elevated when compared with concentrations in control animals. No histopathologic alterations were observed irrespective of tissue concentrations within any examined organ. Conclusion Ten weeks after one injection of a clinically relevant dose of gadolinium-based contrast agents, the liver and kidney appeared to be reservoirs of gadolinium; however, despite gadolinium presence, no tissue injury was detected. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Clément in this issue.


Asunto(s)
Encéfalo/metabolismo , Medios de Contraste/farmacocinética , Gadolinio/farmacocinética , Riñón/metabolismo , Hígado/metabolismo , Animales , Femenino , Modelos Animales , Estudios Prospectivos , Ovinos , Distribución Tisular
2.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355511

RESUMEN

New antithrombotic drugs are needed to combat thrombosis, a dangerous pathology that causes myocardial infarction and ischemic stroke. In this respect, thrombin (FIIa) represents an important drug target. We herein report the synthesis and biological activity of a series of 1H-pyrazol-5-amine-based thrombin inhibitors with a serine-trapping mechanism of action. Among synthesized compounds, flexible acylated 1H-pyrazol-5-amines 24e, 34a, and 34b were identified as potent 16-80 nM thrombin inhibitors, which showed practically no off-targeting effect against other physiologically relevant serine proteases. To prove that synthesized compounds are covalent thrombin inhibitors, the most potent derivative 24e (FIIa IC50 = 16 nM) was studied in a mass-shift assay, where it has been shown that 24e transfers its acyl moiety (pivaloyl) to the catalytic Ser195 of thrombin. Performed herein docking studies also confirmed the covalent mechanism of thrombin inhibition by synthesized compounds. Acylated aminopyrazoles found during this study showed only limited effects on plasma coagulation in activated partial thrombin time (aPTT) and prothrombin time (PT) in vitro assays. However, such thrombin inhibitors are expected to have virtually no effect on bleeding time and can be used as a starting point for developing a safer alternative to traditional non-covalent anticoagulants.

3.
PLoS One ; 15(2): e0227649, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32012163

RESUMEN

OBJECTIVE: To determine the effect of a linear gadolinium-based contrast agent (GBCA) on the signal intensity (SI) of the deep cerebellar nuclei (DCN) in a retrospective clinical study on dogs after multiple magnetic resonance (MR) examinations with intravenous injections of gadodiamide and LA-ICP-MS analysis of a canine cerebellum after gadodiamide administration. ANIMALS: 15 client-owned dogs of different breeds and additionally 1 research beagle dog cadaver. PROCEDURES: In the retrospective study part, 15 dogs who underwent multiple consecutive MR imaging examinations with intravenous injection of linear GBCA gadodiamide were analyzed. SI ratio differences on unenhanced T1-weighted MR images before and after gadodiamide injections was calculated by subtracting SI ratios between DCN and pons of the first examination from the ratio of the last examination. Additionally, 1 research beagle dog cadaver was used for LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) analysis of gadolinium in the cerebellum as an add-on to another animal study. Descriptive and non-parametrical statistical analysis was performed and a p-value of < 0.05 was considered significant. RESULTS: No statistically significant differences of SI ratios, between DCN and pons, were detectable based on unenhanced T1-weighted MR images. LA-ICP-MS analyses showed between 1.5 to 2.5 µg gadolinium/g tissue in the cerebellum of the examined dog, 35 months after the last of 3 MRI examination with gadodiamide (two examinations at a dose of 1 x 0.1mmol/kg, last examination at a dose of 3 x 0.05mmol/kg). CONCLUSION AND CLINICAL RELEVANCE: Although the retrospective MRI study did not indicate any visible effect of SI increase after multiple gadodiamide exposures, further studies based on LA-ICP-MS showed that the optical threshold was not reached for a potential visible effect. Gadolinium was detectable at a level of 1.5 to 2.5 µg gadolinium/g tissue by using LA-ICP-MS in the cerebellum 35 months after last MRI examination. The general importance of gadolinium retention of subvisible contents requires further investigation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Núcleos Cerebelosos/diagnóstico por imagen , Medios de Contraste/farmacología , Gadolinio/farmacología , Administración Intravenosa , Animales , Encéfalo/efectos de los fármacos , Perros , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA