Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38964326

RESUMEN

The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.

2.
Cell ; 184(25): 6052-6066.e18, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34852239

RESUMEN

The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Virus del Dengue , Dengue , Proteínas del Envoltorio Viral , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Dengue/inmunología , Dengue/virología , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Drosophila melanogaster , Células HEK293 , Humanos , Unión Proteica , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
3.
Nature ; 520(7545): 109-13, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25581790

RESUMEN

Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Virus del Dengue/química , Virus del Dengue/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Reacciones Cruzadas/inmunología , Cristalografía por Rayos X , Virus del Dengue/clasificación , Epítopos/química , Epítopos/inmunología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Conformación Proteica , Multimerización de Proteína , Solubilidad , Especificidad de la Especie , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología
4.
Proc Natl Acad Sci U S A ; 112(27): 8290-5, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100869

RESUMEN

The survival of commensal bacteria requires them to evade host peptidases. Gram-negative bacteria from the human gut microbiome encode a relative of the human endopeptidase inhibitor, α2-macroglobulin (α2M). Escherichia coli α2M (ECAM) is a ∼ 180-kDa multidomain membrane-anchored pan-peptidase inhibitor, which is cleaved by host endopeptidases in an accessible bait region. Structural studies by electron microscopy and crystallography reveal that this cleavage causes major structural rearrangement of more than half the 13-domain structure from a native to a compact induced form. It also exposes a reactive thioester bond, which covalently traps the peptidase. Subsequently, peptidase-laden ECAM is shed from the membrane and may dimerize. Trapped peptidases are still active except against very large substrates, so inhibition potentially prevents damage of large cell envelope components, but not host digestion. Mechanistically, these results document a novel monomeric "snap trap."


Asunto(s)
Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Inhibidores de Proteasas/metabolismo , alfa-Macroglobulinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microbiota/genética , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , alfa-Macroglobulinas/química , alfa-Macroglobulinas/genética
5.
Biol Chem ; 398(9): 975-994, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28253193

RESUMEN

Peptidases must be exquisitely regulated to prevent erroneous cleavage and one control is provided by protein inhibitors. These are usually specific for particular peptidases or families and sterically block the active-site cleft of target enzymes using lock-and-key mechanisms. In contrast, members of the +1400-residue multi-domain α2-macroglobulin inhibitor family (α2Ms) are directed against a broad spectrum of endopeptidases of disparate specificities and catalytic types, and they inhibit their targets without disturbing their active sites. This is achieved by irreversible trap mechanisms resulting from large conformational rearrangement upon cleavage in a promiscuous bait region through the prey endopeptidase. After decades of research, high-resolution structural details of these mechanisms have begun to emerge for tetrameric and monomeric α2Ms, which use 'Venus-flytrap' and 'snap-trap' mechanisms, respectively. In the former, represented by archetypal human α2M, inhibition is exerted through physical entrapment in a large cage, in which preys are still active against small substrates and inhibitors that can enter the cage through several apertures. In the latter, represented by a bacterial α2M from Escherichia coli, covalent linkage and steric hindrance of the prey inhibit activity, but only against very large substrates.


Asunto(s)
Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , alfa-Macroglobulinas/química , alfa-Macroglobulinas/farmacología , Animales , Endopeptidasas/química , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína
6.
EMBO J ; 31(3): 767-79, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139356

RESUMEN

The four serotypes of dengue virus (DENV-1 to -4) cause the most important emerging viral disease. Protein E, the principal viral envelope glycoprotein, mediates fusion of the viral and endosomal membranes during virus entry and is the target of neutralizing antibodies. However, the epitopes of strongly neutralizing human antibodies have not been described despite their importance to vaccine development. The chimpanzee Mab 5H2 potently neutralizes DENV-4 by binding to domain I of E. The crystal structure of Fab 5H2 bound to E from DENV-4 shows that antibody binding prevents formation of the fusogenic hairpin conformation of E, which together with in-vitro assays, demonstrates that 5H2 neutralizes by blocking membrane fusion in the endosome. Furthermore, we show that human sera from patients recovering from DENV-4 infection contain antibodies that bind to the 5H2 epitope region on domain I. This study, thus, provides new information and tools for effective vaccine design to prevent dengue disease.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Pruebas de Neutralización , Primates/inmunología , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteínas Virales/química
7.
J Virol ; 89(8): 4356-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653438

RESUMEN

UNLABELLED: Pestiviruses form a genus in the Flaviviridae family of small enveloped viruses with a positive-sense single-stranded RNA genome. Viral replication in this family requires the activity of a superfamily 2 RNA helicase contained in the C-terminal domain of nonstructural protein 3 (NS3). NS3 features two conserved RecA-like domains (D1 and D2) with ATPase activity, plus a third domain (D3) that is important for unwinding nucleic acid duplexes. We report here the X-ray structure of the pestivirus NS3 helicase domain (pNS3h) at a 2.5-Å resolution. The structure deviates significantly from that of NS3 of other genera in the Flaviviridae family in D3, as it contains two important insertions that result in a narrower nucleic acid binding groove. We also show that mutations in pNS3h that rescue viruses from which the core protein is deleted map to D3, suggesting that this domain may be involved in interactions that facilitate particle assembly. Finally, structural comparisons of the enzyme in different crystalline environments, together with the findings of small-angle X-ray-scattering studies in solution, show that D2 is mobile with respect to the rest of the enzyme, oscillating between closed and open conformations. Binding of a nonhydrolyzable ATP analog locks pNS3h in a conformation that is more compact than the closest apo-form in our crystals. Together, our results provide new insight and bring up new questions about pNS3h function during pestivirus replication. IMPORTANCE: Although pestivirus infections impose an important toll on the livestock industry worldwide, little information is available about the nonstructural proteins essential for viral replication, such as the NS3 helicase. We provide here a comparative structural and functional analysis of pNS3h with respect to its orthologs in other viruses of the same family, the flaviviruses and hepatitis C virus. Our studies reveal differences in the nucleic acid binding groove that could have implications for understanding the unwinding specificity of pNS3h, which is active only on RNA duplexes. We also show that pNS3h has a highly dynamic behavior--a characteristic probably shared with NS3 helicases from all Flaviviridae members--that could be targeted for drug design by using recent algorithms to specifically block molecular motion. Compounds that lock the enzyme in a single conformation or limit its dynamic range of conformations are indeed likely to block its helicase function.


Asunto(s)
Modelos Moleculares , Pestivirus/enzimología , Proteínas no Estructurales Virales/química , Clonación Molecular , Cristalografía por Rayos X , Oligonucleótidos/genética , Conformación Proteica , ARN Helicasas/química , Dispersión del Ángulo Pequeño , Serina Endopeptidasas/química , Especificidad de la Especie
8.
J Virol ; 89(21): 11129-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26246564

RESUMEN

UNLABELLED: Presently, respiratory syncytial virus (RSV), the main cause of severe respiratory infections in infants, cannot be treated efficiently with antivirals. However, its RNA-dependent polymerase complex offers potential targets for RSV-specific drugs. This includes the recognition of its template, the ribonucleoprotein complex (RNP), consisting of genomic RNA encapsidated by the RSV nucleoprotein, N. This recognition proceeds via interaction between the phosphoprotein P, which is the main polymerase cofactor, and N. The determinant role of the C terminus of P, and more particularly of the last residue, F241, in RNP binding and viral RNA synthesis has been assessed previously. Here, we provide detailed structural insight into this crucial interaction for RSV polymerase activity. We solved the crystallographic structures of complexes between the N-terminal domain of N (N-NTD) and C-terminal peptides of P and characterized binding by biophysical approaches. Our results provide a rationale for the pivotal role of F241, which inserts into a well-defined N-NTD pocket. This primary binding site is completed by transient contacts with upstream P residues outside the pocket. Based on the structural information of the N-NTD:P complex, we identified inhibitors of this interaction, selected by in silico screening of small compounds, that efficiently bind to N and compete with P in vitro. One of the compounds displayed inhibitory activity on RSV replication, thereby strengthening the relevance of N-NTD for structure-based design of RSV-specific antivirals. IMPORTANCE: Respiratory syncytial virus (RSV) is a widespread pathogen that is a leading cause of acute lower respiratory infections in infants worldwide. RSV cannot be treated efficiently with antivirals, and no vaccine is presently available, with the development of pediatric vaccines being particularly challenging. Therefore, there is a need for new therapeutic strategies that specifically target RSV. The interaction between the RSV phosphoprotein P and the ribonucleoprotein complex is critical for viral replication. In this study, we identified the main structural determinants of this interaction, and we used them to screen potential inhibitors in silico. We found a family of molecules that were efficient competitors of P in vitro and showed inhibitory activity on RSV replication in cellular assays. These compounds provide a basis for a pharmacophore model that must be improved but that holds promises for the design of new RSV-specific antivirals.


Asunto(s)
Antivirales/química , Modelos Moleculares , Nucleocápside/química , Fosfoproteínas/química , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/química , Calorimetría , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Proteínas Luminiscentes , Espectroscopía de Resonancia Magnética , Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Conformación Proteica , Virus Sincitial Respiratorio Humano/metabolismo , Difracción de Rayos X , Proteína Fluorescente Roja
9.
Nature ; 468(7324): 709-12, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21124458

RESUMEN

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused widespread outbreaks of debilitating human disease in the past five years. CHIKV invasion of susceptible cells is mediated by two viral glycoproteins, E1 and E2, which carry the main antigenic determinants and form an icosahedral shell at the virion surface. Glycoprotein E2, derived from furin cleavage of the p62 precursor into E3 and E2, is responsible for receptor binding, and E1 for membrane fusion. In the context of a concerted multidisciplinary effort to understand the biology of CHIKV, here we report the crystal structures of the precursor p62-E1 heterodimer and of the mature E3-E2-E1 glycoprotein complexes. The resulting atomic models allow the synthesis of a wealth of genetic, biochemical, immunological and electron microscopy data accumulated over the years on alphaviruses in general. This combination yields a detailed picture of the functional architecture of the 25 MDa alphavirus surface glycoprotein shell. Together with the accompanying report on the structure of the Sindbis virus E2-E1 heterodimer at acidic pH (ref. 3), this work also provides new insight into the acid-triggered conformational change on the virus particle and its inbuilt inhibition mechanism in the immature complex.


Asunto(s)
Virus Chikungunya/química , Glicoproteínas de Membrana/química , Proteínas del Envoltorio Viral/química , Virión/química , Animales , Línea Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Drosophila melanogaster , Concentración de Iones de Hidrógeno , Modelos Moleculares , Complejos Multiproteicos/química , Multimerización de Proteína , Precursores de Proteínas/química , Estructura Cuaternaria de Proteína , Proteínas Virales de Fusión/química
10.
Nature ; 462(7276): 1011-5, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19946264

RESUMEN

Type IV secretion systems are secretion nanomachines spanning the two membranes of Gram-negative bacteria. Three proteins, VirB7, VirB9 and VirB10, assemble into a 1.05 megadalton (MDa) core spanning the inner and outer membranes. This core consists of 14 copies of each of the proteins and forms two layers, the I and O layers, inserting in the inner and outer membrane, respectively. Here we present the crystal structure of a approximately 0.6 MDa outer-membrane complex containing the entire O layer. This structure is the largest determined for an outer-membrane channel and is unprecedented in being composed of three proteins. Unexpectedly, this structure identifies VirB10 as the outer-membrane channel with a unique hydrophobic double-helical transmembrane region. This structure establishes VirB10 as the only known protein crossing both membranes of Gram-negative bacteria. Comparison of the cryo-electron microscopy (cryo-EM) and crystallographic structures points to conformational changes regulating channel opening and closing.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Bacterias Gramnegativas/química , Bacterias Gramnegativas/fisiología , Modelos Moleculares , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Unión Proteica , Estructura Cuaternaria de Proteína
11.
EMBO J ; 28(11): 1655-65, 2009 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-19407816

RESUMEN

Double-stranded (ds) RNA virus particles are organized around a central icosahedral core capsid made of 120 identical subunits. This core capsid is unable to invade cells from outside, and animal dsRNA viruses have acquired surrounding capsid layers that are used to deliver a transcriptionally active core particle across the membrane during cell entry. In contrast, dsRNA viruses infecting primitive eukaryotes have only a simple core capsid, and as a consequence are transmitted only vertically. Here, we report the 3.4 A X-ray structure of a picobirnavirus--an animal dsRNA virus associated with diarrhoea and gastroenteritis in humans. The structure shows a simple core capsid with a distinctive icosahedral arrangement, displaying 60 two-fold symmetric dimers of a coat protein (CP) with a new 3D-fold. We show that, as many non-enveloped animal viruses, CP undergoes an autoproteolytic cleavage, releasing a post-translationally modified peptide that remains associated with nucleic acid within the capsid. Our data also show that picobirnavirus particles are capable of disrupting biological membranes in vitro, indicating that its simple 120-subunits capsid has evolved animal cell invasion properties.


Asunto(s)
Picobirnavirus/química , Picobirnavirus/ultraestructura , Proteínas Virales/química , Virión/química , Virión/ultraestructura , Secuencia de Aminoácidos , Animales , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Picobirnavirus/fisiología , Procesamiento Proteico-Postraduccional , Virión/fisiología , Internalización del Virus
12.
J Gen Virol ; 94(Pt 8): 1734-1738, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23677789

RESUMEN

Respiratory syncytial virus (RSV) is an important human pathogen. Its nucleocapsid (NC), which comprises the negative sense RNA viral genome coated by the viral nucleoprotein N, is a critical assembly that serves as template for both mRNA synthesis and genome replication. We have previously described the X-ray structure of an NC-like structure: a decameric ring formed of N-RNA that mimics one turn of the helical NC. In the absence of experimental data we had hypothesized that the NC helix would be right-handed, as the N-N contacts in the ring appeared to more easily adapt to that conformation. We now unambiguously show that the RSV NC is a left-handed helix. We further show that the contacts in the ring can be distorted to maintain key N-N-protein interactions in a left-handed helix, and discuss the implications of the resulting atomic model of the helical NC for viral replication and transcription.


Asunto(s)
Nucleocápside/química , Nucleoproteínas/química , ARN Viral/química , Virus Sincitial Respiratorio Humano/química , Humanos , Modelos Moleculares , Nucleoproteínas/metabolismo , Unión Proteica , Conformación Proteica , ARN Viral/metabolismo
13.
J Virol ; 86(16): 8375-87, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22623798

RESUMEN

The human respiratory syncytial virus (HRSV) genome is composed of a negative-sense single-stranded RNA that is tightly associated with the nucleoprotein (N). This ribonucleoprotein (RNP) complex is the template for replication and transcription by the viral RNA-dependent RNA polymerase. RNP recognition by the viral polymerase involves a specific interaction between the C-terminal domain of the phosphoprotein (P) (P(CTD)) and N. However, the P binding region on N remains to be identified. In this study, glutathione S-transferase (GST) pulldown assays were used to identify the N-terminal core domain of HRSV N (N(NTD)) as a P binding domain. A biochemical characterization of the P(CTD) and molecular modeling of the N(NTD) allowed us to define four potential candidate pockets on N (pocket I [PI] to PIV) as hydrophobic sites surrounded by positively charged regions, which could constitute sites complementary to the P(CTD) interaction domain. The role of selected amino acids in the recognition of the N-RNA complex by P was first screened for by site-directed mutagenesis using a polymerase activity assay, based on an HRSV minigenome containing a luciferase reporter gene. When changed to Ala, most of the residues of PI were found to be critical for viral RNA synthesis, with the R132A mutant having the strongest effect. These mutations also reduced or abolished in vitro and in vivo P-N interactions, as determined by GST pulldown and immunoprecipitation experiments. The pocket formed by these residues is critical for P binding to the N-RNA complex, is specific for pneumovirus N proteins, and is clearly distinct from the P binding sites identified so far for other nonsegmented negative-strand viruses.


Asunto(s)
Nucleoproteínas/metabolismo , Mapeo de Interacción de Proteínas , Virus Sincitial Respiratorio Humano/metabolismo , Proteínas Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Cricetinae , Inmunoprecipitación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Virus Sincitial Respiratorio Humano/genética
14.
Angew Chem Int Ed Engl ; 51(14): 3340-4, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22290936

RESUMEN

I'm your Venus: the crystal structure of the human methylamine-induced form of α(2)-macroglobulin (α(2)M) shows its large central cavity can accommodate two medium-sized proteinases. Twelve major entrances provide access for small substrates to the cavity and the still-active trapped "prey". The structure unveils the molecular basis of the unique "venus flytrap" mechanism of α(2)M.


Asunto(s)
alfa-Macroglobulinas/química , Cristalografía por Rayos X , Humanos , Metilaminas/química , Inhibidores de Proteasas/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , alfa-Macroglobulinas/metabolismo
15.
Nat Commun ; 13(1): 3718, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764616

RESUMEN

The flavivirus envelope glycoproteins prM and E drive the assembly of icosahedral, spiky immature particles that bud across the membrane of the endoplasmic reticulum. Maturation into infectious virions in the trans-Golgi network involves an acid-pH-driven rearrangement into smooth particles made of (prM/E)2 dimers exposing a furin site for prM cleavage into "pr" and "M". Here we show that the prM "pr" moiety derives from an HSP40 cellular chaperonin. Furthermore, the X-ray structure of the tick-borne encephalitis virus (pr/E)2 dimer at acidic pH reveals the E 150-loop as a hinged-lid that opens at low pH to expose a positively-charged pr-binding pocket at the E dimer interface, inducing (prM/E)2 dimer formation to generate smooth particles in the Golgi. Furin cleavage is followed by lid-closure upon deprotonation in the neutral-pH extracellular environment, expelling pr while the 150-loop takes the relay in fusion loop protection, thus revealing the elusive flavivirus mechanism of fusion activation.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Furina , Fusión de Membrana , Proteínas del Envoltorio Viral/química , Virión
16.
Nat Struct Mol Biol ; 12(8): 678-82, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16041386

RESUMEN

Immature HIV particles bud from infected cells after assembly at the cytoplasmic side of cellular membranes. This assembly is driven by interactions between Gag polyproteins. Mature particles, each containing a characteristic conical core, are later generated by proteolytic maturation of Gag in the virion. The C-terminal domain of the HIV-1 capsid protein (C-CA) has been shown to contain oligomerization determinants essential for particle assembly. Here we report the 1.7-A-resolution crystal structure of C-CA in complex with a peptide capable of inhibiting immature- and mature-like particle assembly in vitro. The peptide inserts as an amphipathic alpha-helix into a conserved hydrophobic groove of C-CA, resulting in formation of a compact five-helix bundle with altered dimeric interactions. This structure thus reveals the details of an allosteric site in the HIV capsid protein that can be targeted for antiviral therapy.


Asunto(s)
Proteínas de la Cápside/metabolismo , Productos del Gen gag/metabolismo , VIH-1/fisiología , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Ensamble de Virus/genética , Proteínas de la Cápside/química , Productos del Gen gag/genética , VIH-1/metabolismo , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Ensamble de Virus/fisiología , Difracción de Rayos X
17.
J Virol ; 82(5): 2580-5, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18077706

RESUMEN

Peptides based on heptad repeat (HR) domains of class I viral fusion proteins are considered promising antiviral drugs targeting virus cell entry. We have analyzed the evolution of the mouse hepatitis coronavirus during multiple passaging in the presence of an HR2-based fusion inhibitor. Drug-resistant variants emerged as a result of multiple substitutions in the spike fusion protein, notably within a 19-residue segment of the HR1 region. Strikingly, one mutation, an A1006V substitution, which consistently appeared first in four independently passaged viruses, was the main determinant of the resistance phenotype, suggesting that only limited options exist for escape from the inhibitory effect of the HR2 peptide.


Asunto(s)
Coronavirus/fisiología , Fusión de Membrana , Glicoproteínas de Membrana/química , Mutación , Péptidos/fisiología , Proteínas del Envoltorio Viral/química , Animales , Línea Celular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Ratones , Secuencias Repetitivas de Aminoácido , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/fisiología
18.
J Mol Biol ; 368(5): 1321-31, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17395205

RESUMEN

Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.


Asunto(s)
Anticuerpos Monoclonales/química , Afinidad de Anticuerpos , Epítopos , Fragmentos de Inmunoglobulinas/química , Inmunoglobulina G/química , Inmunoglobulina M/química , Factor Reumatoide/química , Secuencia de Aminoácidos , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Artritis Reumatoide/inmunología , Autoanticuerpos/química , Autoanticuerpos/genética , Autoanticuerpos/metabolismo , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/metabolismo , Cristalografía por Rayos X , Humanos , Fragmentos de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina M/genética , Inmunoglobulina M/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Factor Reumatoide/genética , Factor Reumatoide/metabolismo
19.
Nat Commun ; 8: 15411, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28534525

RESUMEN

A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dynamic 'breathing' of E dimers at the virion surface. In contrast, antibodies targeting the E dimer epitope (EDE), readily exposed at the E dimer interface over the region of the conserved fusion loop, are very potent and broadly neutralizing. We here engineer E dimers locked by inter-subunit disulfide bonds, and show by X-ray crystallography and by binding to a panel of human antibodies that these engineered dimers do not expose the FLE, while retaining the EDE exposure. These locked dimers are strong immunogen candidates for a next-generation vaccine.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Virus del Dengue/inmunología , Epítopos Inmunodominantes/inmunología , Proteínas del Envoltorio Viral/inmunología , Aedes , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Cristalografía por Rayos X , Disulfuros , Drosophila , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Células HEK293 , Humanos , Liposomas/química , Ratones , Mutación , Dominios Proteicos , Multimerización de Proteína , Células Vero
20.
PLoS Med ; 3(7): e263, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16700631

RESUMEN

BACKGROUND: A chikungunya virus outbreak of unprecedented magnitude is currently ongoing in Indian Ocean territories. In Réunion Island, this alphavirus has already infected about one-third of the human population. The main clinical symptom of the disease is a painful and invalidating poly-arthralgia. Besides the arthralgic form, 123 patients with a confirmed chikungunya infection have developed severe clinical signs, i.e., neurological signs or fulminant hepatitis. METHODS AND FINDINGS: We report the nearly complete genome sequence of six selected viral isolates (isolated from five sera and one cerebrospinal fluid), along with partial sequences of glycoprotein E1 from a total of 127 patients from Réunion, Seychelles, Mauritius, Madagascar, and Mayotte islands. Our results indicate that the outbreak was initiated by a strain related to East-African isolates, from which viral variants have evolved following a traceable microevolution history. Unique molecular features of the outbreak isolates were identified. Notably, in the region coding for the non-structural proteins, ten amino acid changes were found, four of which were located in alphavirus-conserved positions of nsP2 (which contains helicase, protease, and RNA triphosphatase activities) and of the polymerase nsP4. The sole isolate obtained from the cerebrospinal fluid showed unique changes in nsP1 (T301I), nsP2 (Y642N), and nsP3 (E460 deletion), not obtained from isolates from sera. In the structural proteins region, two noteworthy changes (A226V and D284E) were observed in the membrane fusion glycoprotein E1. Homology 3D modelling allowed mapping of these two changes to regions that are important for membrane fusion and virion assembly. Change E1-A226V was absent in the initial strains but was observed in >90% of subsequent viral sequences from Réunion, denoting evolutionary success possibly due to adaptation to the mosquito vector. CONCLUSIONS: The unique molecular features of the analyzed Indian Ocean isolates of chikungunya virus demonstrate their high evolutionary potential and suggest possible clues for understanding the atypical magnitude and virulence of this outbreak.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/genética , Virus Chikungunya/genética , Brotes de Enfermedades , Genoma Viral , Secuencia de Bases , Líquido Cefalorraquídeo/virología , Virus Chikungunya/aislamiento & purificación , Evolución Molecular , Variación Genética , Genoma Viral/genética , Glicosilación , Humanos , Inmunoensayo , Islas del Oceano Índico/epidemiología , Fenotipo , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA