Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Transplant ; 19(12): 3263-3275, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31207067

RESUMEN

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.


Asunto(s)
Antígeno CD47/metabolismo , Rechazo de Injerto/inmunología , Trasplante de Riñón/efectos adversos , Células Mieloides/inmunología , Células Supresoras de Origen Mieloide/inmunología , Receptores Inmunológicos/metabolismo , Tolerancia al Trasplante/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno CD47/antagonistas & inhibidores , Antígeno CD47/inmunología , Quimiocinas , Rechazo de Injerto/patología , Supervivencia de Injerto/inmunología , Células Mieloides/citología , Ratas , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología
2.
J Immunol ; 195(10): 5035-44, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432892

RESUMEN

Emerging knowledge regarding B cells in organ transplantation has demonstrated that these cells can no longer be taken as mere generators of deleterious Abs but can also act as beneficial players. We previously demonstrated in a rat model of cardiac allograft tolerance induced by short-term immunosuppression an accumulation in the blood of B cells overexpressing inhibitory molecules, a phenotype also observed in the blood of patients that spontaneously develop graft tolerance. In this study, we demonstrated the presence in the spleen of regulatory B cells enriched in the CD24(int)CD38(+)CD27(+)IgD(-)IgM(+/low) subpopulation, which are able to transfer donor-specific tolerance via IL-10 and TGF-ß1-dependent mechanisms and to suppress in vitro TNF-α secretion. Following anti-CD40 stimulation, IgD(-)IgM(+/low) B cells were blocked in their plasma cell differentiation pathway, maintained high expression of the inhibitory molecules CD23 and Bank1, and upregulated Granzyme B and Irf4, two molecules described as highly expressed by regulatory B cells. Interestingly, these B cells recognized specifically a dominant donor Ag, suggesting restricted specificity that could lead to a particular B cell response. Regulatory B cells were not required for induction of tolerance and appeared following Foxp3(+)CD4(+)CD25(+) regulatory T cells, suggesting cooperation with regulatory T cells for their expansion. Nevertheless, following transfer to new recipients, these B cells migrated to the allograft, kept their regulatory profile, and promoted local accumulation of Foxp3(+)CD4(+)CD25(+) regulatory T cells. Mechanisms of regulatory B cells and their cell therapy potential are important to decipher in experimental models to pave the way for future developments in the clinic.


Asunto(s)
Linfocitos B Reguladores/inmunología , Antígenos CD40/inmunología , Granzimas/inmunología , Trasplante de Corazón , Células Plasmáticas/inmunología , Transducción de Señal/inmunología , Tolerancia al Trasplante , Aloinjertos , Animales , Antígenos CD/inmunología , Citocinas/inmunología , Isoantígenos/inmunología , Masculino , Ratas , Linfocitos T Reguladores/inmunología
3.
J Am Soc Nephrol ; 26(10): 2588-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25644114

RESUMEN

Whereas a B cell-transcriptional profile has been recorded for operationally tolerant kidney graft patients, the role that B cells have in this tolerance has not been reported. In this study, we analyzed the role of B cells from operationally tolerant patients, healthy volunteers, and kidney transplant recipients with stable graft function on T cell suppression. Proliferation, apoptosis, and type I proinflammatory cytokine production by effector CD4(+)CD25(-) T cells were measured after anti-CD3/anti-CD28 stimulation with or without autologous B cells. We report that B cells inhibit CD4(+)CD25(-) effector T cell response in a dose-dependent manner. This effect required B cells to interact with T-cell targets and was achieved through a granzyme B (GzmB)-dependent pathway. Tolerant recipients harbored a higher number of B cells expressing GzmB and displaying a plasma cell phenotype. Finally, GzmB(+) B-cell number was dependent on IL-21 production, and B cells from tolerant recipients but not from other patients positively regulated both the number of IL-21(+) T cells and IL-21 production, suggesting a feedback loop in tolerant recipients that increases excessive B cell activation and allows regulation to take place. These data provide insights into the characterization of B cell-mediated immunoregulation in clinical tolerance and show a potential regulatory effect of B cells on effector T cells in blood from patients with operationally tolerant kidney grafts.


Asunto(s)
Linfocitos B/inmunología , Trasplante de Riñón , Tolerancia al Trasplante , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
J Clin Invest ; 130(11): 6109-6123, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074246

RESUMEN

T cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown. We report a potent synergy between selective SIRPα blockade and ICB in increasing memory T cell responses and reverting exclusion in syngeneic and orthotopic tumor models. Selective SIRPα blockade stimulated tumor nest T cell recruitment by restoring murine and human macrophage chemokine secretion and increased anti-tumor T cell responses by promoting tumor-antigen crosspresentation by dendritic cells. However, nonselective SIRPα/SIRPγ blockade targeting CD47 impaired human T cell activation, proliferation, and endothelial transmigration. Selective SIRPα inhibition opens an attractive avenue to overcoming ICB resistance in patients with elevated myeloid cell infiltration in solid tumors.


Asunto(s)
Memoria Inmunológica , Inmunoterapia , Neoplasias Mamarias Experimentales/terapia , Proteínas de Neoplasias/inmunología , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Animales , Femenino , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/genética , Receptores Inmunológicos/genética , Linfocitos T/patología
5.
World J Transplant ; 5(4): 196-208, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26722647

RESUMEN

Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting.

6.
PLoS One ; 10(3): e0119686, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763980

RESUMEN

We previously described that in a rat model of heart transplantation tolerance was dependent on CD8+CD45RClow Tregs that over-expressed fibrinogen-like protein 2 (FGL2)/fibroleukin. Little is known on the immunoregulatory properties of FGL2. Here we analyzed the transplantation tolerance mechanisms that are present in Lewis 1A rats treated with FGL2. Over-expression of FGL2 in vivo through adenovirus associated virus -mediated gene transfer without any further treatment resulted in inhibition of cardiac allograft rejection. Adoptive cell transfer of splenocytes from FGL2-treated rats with long-term graft survival (> 80 days) in animals that were transplanted with cardiac allografts inhibited acute and chronic organ rejection in a donor-specific and transferable tolerance manner, since iterative adoptive transfer up to a sixth consecutive recipient resulted in transplantation tolerance. Adoptive cell transfer also efficiently inhibited anti-donor antibody production. Analysis of all possible cell populations among splenocytes revealed that B lymphocytes were sufficient for this adoptive cell tolerance. These B cells were also capable of inhibiting the proliferation of CD4+ T cells in response to allogeneic stimuli. Moreover, gene transfer of FGL2 in B cell deficient rats did not prolong graft survival. Thus, this is the first description of FGL2 resulting in long-term allograft survival. Furthermore, allograft tolerance was transferable and B cells were the main cells responsible for this effect.


Asunto(s)
Aloinjertos/trasplante , Linfocitos B Reguladores/metabolismo , Fibrinógeno/administración & dosificación , Rechazo de Injerto/prevención & control , Rechazo de Injerto/terapia , Supervivencia de Injerto , Animales , Fibrinógeno/genética , Técnicas de Transferencia de Gen , Rechazo de Injerto/genética , Rechazo de Injerto/metabolismo , Masculino , Ratas
7.
PLoS One ; 9(4): e93894, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24705920

RESUMEN

Dendritic cells are sentinels of the immune system distributed throughout the body, that following danger signals will migrate to secondary lymphoid organs to induce effector T cell responses. We have identified, in a rodent model of graft rejection, a new molecule expressed by dendritic cells that we have named LIMLE (RGD1310371). To characterize this new molecule, we analyzed its regulation of expression and its function. We observed that LIMLE mRNAs were rapidly and strongly up regulated in dendritic cells following inflammatory stimulation. We demonstrated that LIMLE inhibition does not alter dendritic cell maturation or cytokine production following Toll-like-receptor stimulation. However, it reduces their ability to stimulate effector T cells in a mixed leukocyte reaction or T cell receptor transgenic system. Interestingly, we observed that LIMLE protein localized with actin at some areas under the plasma membrane. Moreover, LIMLE is highly expressed in testis, trachea, lung and ciliated cells and it has been shown that cilia formation bears similarities to formation of the immunological synapse which is required for the T cell activation by dendritic cells. Taken together, these data suggest a role for LIMLE in specialized structures of the cytoskeleton that are important for dynamic cellular events such as immune synapse formation. In the future, LIMLE may represent a new target to reduce the capacity of dendritic cells to stimulate T cells and to regulate an immune response.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/inmunología , Rechazo de Injerto/inmunología , Sinapsis Inmunológicas/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Biología Computacional , Citocinas/inmunología , Rechazo de Injerto/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Transgénicos , Oligonucleótidos/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA