Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(30): 12987-12994, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32627546

RESUMEN

We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a nonplanar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and -2, respectively, for their surface areas, pore sizes, and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.

2.
ACS Macro Lett ; 10(4): 486-491, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549222

RESUMEN

Dynamic covalent bonds impart new properties to 3D printable materials that help to establish 3D printing as an accessible and efficient manufacturing technique. Here, we studied the effect of a thermally reversible Diels-Alder cross-linker on the shape stability of photoprintable resins and their self-healing properties. Resins containing different concentrations of dynamic covalent cross-links in a polyacrylate network showed that the content of dynamic cross-links plays a key role in balancing shape stability with self-healing ability. The shape stability of the printed objects was evaluated by measuring the dimensional changes after thermal treatment. The self-healing efficiency of the 3D printed resins was characterized with a scratch test and tensile testing. A dynamic covalent cross-link concentration of 1.8 mol % was enough to provide 99% self-healing efficiency without disrupting the shape stability of the printed objects. Our work shows the potential of dynamic covalent bonds in broadening the availability of 3D printable materials that are compatible with vat photopolymerization.

3.
Nat Commun ; 12(1): 2202, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850135

RESUMEN

Artificial native-like lipid bilayer systems constructed from phospholipids assembling into unilamellar liposomes allow the reconstitution of detergent-solubilized transmembrane proteins into supramolecular lipid-protein assemblies called proteoliposomes, which mimic cellular membranes. Stabilization of these complexes remains challenging because of their chemical composition, the hydrophobicity and structural instability of membrane proteins, and the lability of interactions between protein, detergent, and lipids within micelles and lipid bilayers. In this work we demonstrate that metastable lipid, protein-detergent, and protein-lipid supramolecular complexes can be successfully generated and immobilized within zeolitic-imidazole framework (ZIF) to enhance their stability against chemical and physical stressors. Upon immobilization in ZIF bio-composites, blank liposomes, and model transmembrane metal transporters in detergent micelles or embedded in proteoliposomes resist elevated temperatures, exposure to chemical denaturants, aging, and mechanical stresses. Extensive morphological and functional characterization of the assemblies upon exfoliation reveal that all these complexes encapsulated within the framework maintain their native morphology, structure, and activity, which is otherwise lost rapidly without immobilization.


Asunto(s)
Detergentes/química , Dispositivo Exoesqueleto , Inmovilización/métodos , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Membrana Celular , ATPasas Transportadoras de Cobre , Proteínas de Escherichia coli , Cinética , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Micelas , Fosfolípidos , Proteolípidos , Dispersión de Radiación , Liposomas Unilamelares , Difracción de Rayos X
4.
ACS Cent Sci ; 6(6): 836-838, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32607430
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA