RESUMEN
Monocytes are associated with human cardiovascular disease progression. Monocytes are segregated into three major subsets: classical (cMo), intermediate (iMo), and nonclassical (nMo). Recent studies have identified heterogeneity within each of these main monocyte classes, yet the extent to which these subsets contribute to heart disease progression is not known. Peripheral blood mononuclear cells (PBMC) were obtained from 61 human subjects within the Coronary Assessment of Virginia (CAVA) Cohort. Coronary atherosclerosis severity was quantified using the Gensini Score (GS). We employed high-dimensional single-cell transcriptome and protein methods to define how human monocytes differ in subjects with low to severe coronary artery disease. We analyzed 487 immune-related genes and 49 surface proteins at the single-cell level using Antibody-Seq (Ab-Seq). We identified six subsets of myeloid cells (cMo, iMo, nMo, plasmacytoid DC, classical DC, and DC3) at the single-cell level based on surface proteins, and we associated these subsets with coronary artery disease (CAD) incidence based on Gensini score (GS) in each subject. Only frequencies of iMo were associated with high CAD (GS > 32), adj.p = 0.024. Spearman correlation analysis with GS from each subject revealed a positive correlation with iMo frequencies (r = 0.314, p = 0.014) and further showed a robust sex-dependent positive correlation in female subjects (r = 0.663, p = 0.004). cMo frequencies did not correlate with CAD severity. Key gene pathways differed in iMo among low and high CAD subjects and between males and females. Further single-cell analysis of iMo revealed three iMo subsets in human PBMC, distinguished by the expression of HLA-DR, CXCR3, and CD206. We found that the frequency of immunoregulatory iMo_HLA-DR+CXCR3+CD206+ was associated with CAD severity (adj.p = 0.006). The immunoregulatory iMo subset positively correlated with GS in both females (r = 0.660, p = 0.004) and males (r = 0.315, p = 0.037). Cell interaction analyses identified strong interactions of iMo with CD4+ effector/memory T cells and Tregs from the same subjects. This study shows the importance of iMo in CAD progression and suggests that iMo may have important functional roles in modulating CAD risk, particularly among females.
Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Femenino , Masculino , Enfermedad de la Arteria Coronaria/metabolismo , Monocitos/metabolismo , Leucocitos Mononucleares , Caracteres Sexuales , Antígenos HLA-DR/metabolismoRESUMEN
BACKGROUND: Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS: Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS: In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.
Asunto(s)
Infecciones por VIH , Leucocitos Mononucleares , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Infecciones por VIH/genética , Humanos , Leucocitos Mononucleares/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , TranscriptomaRESUMEN
Technological advances in characterizing molecular heterogeneity at the single cell level have ushered in a deeper understanding of the biological diversity of cells present in tissues including atherosclerotic plaques. New subsets of cells have been discovered among cell types previously considered homogenous. The commercial availability of systems to obtain transcriptomes and matching surface phenotypes from thousands of single cells is rapidly changing our understanding of cell types and lineage identity. Emerging methods to infer cellular functions are beginning to shed new light on the interplay of components involved in multifaceted disease responses, like atherosclerosis. Here, we provide a technical guide for design, implementation, assembly, and interpretations of current single cell transcriptomics approaches from the perspective of employing these tools for advancing cardiovascular disease research.
Asunto(s)
Aterosclerosis/genética , Investigación Biomédica , Perfilación de la Expresión Génica , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , HumanosRESUMEN
Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.
Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus , Linfocitos T CD4-Positivos , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus/genética , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Caracteres Sexuales , Análisis de la Célula IndividualRESUMEN
Coronary artery disease (CAD) is a major cause of death worldwide. The role of CD8+ T cells in CAD is unknown. Recent studies suggest a breakdown of tolerance in atherosclerosis, resulting in active T cell receptor (TCR) engagement with self-antigens. We hypothesized that TCR engagement would leave characteristic gene expression signatures. In a single cell RNA-sequencing analysis of CD8+ T cells from 30 patients with CAD and 30 controls we found significant enrichment of TCR signaling pathways in CAD+ subjects, suggesting recent TCR engagement. We also found significant enrichment of cytotoxic and exhaustion pathways in CAD cases compared to controls. Highly significant upregulation of TCR signaling in CAD indicates that CD8 T cells reactive to atherosclerosis antigens are prominent in the blood of CAD cases compared to controls.
Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Transcriptoma , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T , Aterosclerosis/metabolismoRESUMEN
The transcriptomic information obtained by single cell RNA sequencing (scRNA-seq) can be supplemented by information on the cell surface phenotype by using oligonucleotide-tagged monoclonal antibodies (scAb-Seq). This is of particular importance in immune cells, where the correlation between mRNA and cell surface expression is very weak. scAb-Seq is facilitated by the availability of commercial antibodies and antibody mixes. Now panels of up to 200 antibodies are available for human and mouse cells. Proteins are detected by antibodies conjugated to a tripartite DNA sequence that contains a primer for amplification and sequencing, a unique oligonucleotide that acts as an antibody barcode and a poly(dA) sequence, simultaneously detecting extension of antibody-specific DNA sequences and cDNAs in the same poly(dT)-primed reaction. For each cell, surface protein expression is captured and sequenced along with the cell's transcriptome. Here, we list the steps needed to produce antibody sequencing data from tissue or blood cells.
Asunto(s)
Aterosclerosis , Análisis de la Célula Individual , Animales , Aterosclerosis/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Análisis de Secuencia de ARN , TranscriptomaRESUMEN
Atherosclerosis is an inflammatory disease of the artery walls and involves immune cells such as macrophages. Olfactory receptors (OLFRs) are G proteincoupled chemoreceptors that have a central role in detecting odorants and the sense of smell. We found that mouse vascular macrophages express the olfactory receptor Olfr2 and all associated trafficking and signaling molecules. Olfr2 detects the compound octanal, which activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome and induces interleukin-1ß secretion in human and mouse macrophages. We found that human and mouse blood plasma contains octanal, a product of lipid peroxidation, at concentrations sufficient to activate Olfr2 and the human ortholog olfactory receptor 6A2 (OR6A2). Boosting octanal levels exacerbated atherosclerosis, whereas genetic targeting of Olfr2 in mice significantly reduced atherosclerotic plaques. Our findings suggest that inhibiting OR6A2 may provide a promising strategy to prevent and treat atherosclerosis.
Asunto(s)
Aldehídos/metabolismo , Aterosclerosis/metabolismo , Interleucina-1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Odorantes/metabolismo , Adulto , Aldehídos/análisis , Aldehídos/sangre , Aldehídos/farmacología , Animales , Aorta , Aterosclerosis/tratamiento farmacológico , Humanos , Inflamasomas/metabolismo , Interleucina-1alfa/metabolismo , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Receptores Odorantes/antagonistas & inhibidores , Receptores Odorantes/genética , Transducción de SeñalRESUMEN
Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.
RESUMEN
Neuroinflammation is a major component in the transition to and perpetuation of neuropathic pain states. Spinal neuroinflammation involves activation of TLR4, localized to enlarged, cholesterol-enriched lipid rafts, designated here as inflammarafts. Conditional deletion of cholesterol transporters ABCA1 and ABCG1 in microglia, leading to inflammaraft formation, induced tactile allodynia in naive mice. The apoA-I binding protein (AIBP) facilitated cholesterol depletion from inflammarafts and reversed neuropathic pain in a model of chemotherapy-induced peripheral neuropathy (CIPN) in wild-type mice, but AIBP failed to reverse allodynia in mice with ABCA1/ABCG1-deficient microglia, suggesting a cholesterol-dependent mechanism. An AIBP mutant lacking the TLR4-binding domain did not bind microglia or reverse CIPN allodynia. The long-lasting therapeutic effect of a single AIBP dose in CIPN was associated with anti-inflammatory and cholesterol metabolism reprogramming and reduced accumulation of lipid droplets in microglia. These results suggest a cholesterol-driven mechanism of regulation of neuropathic pain by controlling the TLR4 inflammarafts and gene expression program in microglia and blocking the perpetuation of neuroinflammation.
Asunto(s)
Colesterol/metabolismo , Microglía/metabolismo , Neuralgia/metabolismo , Médula Espinal/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular , Células HEK293 , Humanos , Inflamación/metabolismo , Masculino , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Transducción de Señal/fisiologíaRESUMEN
AIMS: During virally suppressed chronic HIV infection, persistent inflammation contributes to the development of cardiovascular disease (CVD), a major comorbidity in people living with HIV (LWH). Classical blood monocytes (CMs) remain activated during antiretroviral therapy and are a major source of pro-inflammatory and pro-thrombotic factors that contribute to atherosclerotic plaque development and instability. METHODS AND RESULTS: Here, we identify transcriptomic changes in circulating CMs in peripheral blood mononuclear cell samples from participants of the Women's Interagency HIV Study, selected by HIV and subclinical CVD (sCVD) status. We flow-sorted CM from participants of the Women's Interagency HIV Study and deep-sequenced their mRNA (n = 92). CMs of HIV+ participants showed elevated interleukin (IL)-6, IL-1ß, and IL-12ß, overlapping with many transcripts identified in sCVD+ participants. In sCVD+ participants LWH, those reporting statin use showed reduced pro-inflammatory gene expression to a level comparable with healthy (HIV-sCVD-) participants. Statin non-users maintained an elevated inflammatory profile and increased cytokine production. CONCLUSION: Statin therapy has been associated with a lower risk of cardiac events, such as myocardial infarction in the general population, but not in those LWH. Our data suggest that women LWH may benefit from statin therapy even in the absence of overt CVD.