Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125720

RESUMEN

Freesia refracta (FR), a perennial flower of the Iris family (Iridaceae), is widely used in cosmetics despite limited scientific evidence of its skin benefits and chemical composition, particularly of FR callus extract (FCE). This study identified biologically active compounds in FCE and assessed their skin benefits, focusing on anti-aging. FR calli were cultured, extracted with water at 40 °C, and analyzed using Centrifugal Partition Chromatography (CPC), Nuclear Magnetic Resonance (NMR), and HCA, revealing key compounds, namely nicotinamide and pyroglutamic acid. FCE significantly increased collagen I production by 52% in normal and aged fibroblasts and enhanced fibroblast-collagen interaction by 37%. An in vivo study of 43 female volunteers demonstrated an 11.1% reduction in skin roughness and a 2.3-fold increase in collagen density after 28 days of cream application containing 3% FCE. Additionally, the preservation tests of cosmetics containing FCE confirmed their stability over 12 weeks. These results suggest that FCE offers substantial anti-aging benefits by enhancing collagen production and fibroblast-collagen interactions. These findings highlighted the potential of FCE in cosmetic applications, providing significant improvements in skin smoothness and overall appearance. This study fills a gap in the scientific literature regarding the skin benefits and chemical composition of FR callus extract, supporting its use in the development of effective cosmeceuticals.


Asunto(s)
Fibroblastos , Estrés Oxidativo , Extractos Vegetales , Envejecimiento de la Piel , Piel , Envejecimiento de la Piel/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Adulto , Colágeno/metabolismo , Cosméticos/farmacología , Persona de Mediana Edad , Niacinamida/farmacología , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/farmacología , Ácido Pirrolidona Carboxílico/metabolismo
2.
J Cosmet Dermatol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086149

RESUMEN

BACKGROUND: Conspicuous facial pores are benign but represent a cosmetic concern for men and women. Recent works described dermal and epidermal impairments as clinical causes of enlarged pores. Morphological modifications of skin at the site of pores were associated with collagen density loss, possible alteration of extracellular matrix and abnormal differentiation of keratinocytes. AIMS: A composition containing mannose-6-phosphate (Active Complex) was designed to address these different aspects of pore enlargement. In vitro and ex vivo evaluations were conducted in different models mimicking disturbance of dermal and epidermal functions. The pore refining activity of Active Complex was assessed in two clinical trials studying a Caucasian women cohort and an Asian men cohort. RESULTS: At the dermal level, Active Complex upregulated collagen I and decorin synthesis, and genes encoding collagens I, III, V, VII, XVII; suggesting its ability to favor collagen fiber organization and anchorage. The downregulation of matrix metalloprotease, involved in extracellular matrix degradation, reinforced the protective effect of Active Complex in the dermis. Active Complex down modulated differentiation markers in keratinocytes as well as genes involved in cell renewal. Study of reconstructed human epidermis modeling keratinocyte hyperproliferation revealed that Active Complex mitigated two markers of this state: number of nuclei in the stratum corneum and involucrin expression. Clinical trials confirmed the pore refining activity of Active Complex on men and women of different ages and ethnicities; -24% total skin pore area after 56 days of application on women, and -30.2% on men after 7 days. CONCLUSIONS: This work demonstrates the interest to target dermal and epidermal modifications described in conspicuous pore area, especially dermis fiber organization, to address this cosmetic concern.

3.
J Cosmet Dermatol ; 23(5): 1734-1744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332551

RESUMEN

BACKGROUND: The COVID-19 pandemic brought about a new normal, necessitating the use of personal protective equipment (PPE) like face shields, surgical masks, gloves, and goggles. However, prolonged mask-wearing introduced skin-related issues due to changes in the skin's microenvironment, including increased humidity and temperature, as well as pressure on the skin. These factors led to skin deformation, vascular issues, edema, and inflammation, resulting in discomfort and cosmetic concerns. Clinical reports quickly highlighted the consequences of long-term mask use, including increased cases of "maskne" (mask-related acne) or mask-wearing related disorders such as rosacea flare-ups, skin-barrier defects, itching, erythema, redness, hyperpigmentation, and lichenification. Some of these issues, like inflammation, oxidative stress, and poor wound healing, could be directly linked to acne-related disorders or skin hypoxia. AIM: To address these problems, researchers turned to rutin, a well-known flavonoid with antioxidant, vasoactive, and anti-inflammatory properties. However, rutin's poor water solubility presented a challenge for cosmetic formulations. To overcome this limitation, a highly water-soluble form of rutin was developed, making it suitable for use at higher concentrations. METHODS: In vitro and ex vivo tests were conducted, as well as an innovative clinical trial including volunteers wearing surgical masks for at least 2 h, to evaluate the biological activity of this soluble rutin on the main skin concerns associated with mask-wearing (inflammation, oxidative stress, skin repair, hyperpigmentation, and skin redness). RESULTS: The in vitro results showed that the active ingredient significantly reduced oxidative stress, improved wound healing, and reduced inflammation. In dark skin explants, the active ingredient significantly reduced melanin content, indicating its lightening activity. This effect was confirmed in the clinical study, where brown spots decreased significantly after 4 days of application. Moreover, measurements on volunteers demonstrated a decrease in skin redness and vascularization after the active ingredient application, indicating inflammation and erythema reduction. Volunteers reported improved skin comfort. CONCLUSION: In summary, the COVID-19 pandemic led to various skin issues associated with mask-wearing. A highly soluble form of rutin was developed, which effectively addressed these concerns by reducing inflammation, oxidative stress, and hyperpigmentation while promoting wound healing. This soluble rutin offers a promising solution for the rapid treatment of maskne-related disorders and other skin problems caused by prolonged mask use.


Asunto(s)
COVID-19 , Máscaras , Rutina , Humanos , Rutina/administración & dosificación , Máscaras/efectos adversos , Solubilidad , Piel/efectos de los fármacos , Acné Vulgar/tratamiento farmacológico , SARS-CoV-2 , Antioxidantes/administración & dosificación , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA