Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8011): 458-466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658765

RESUMEN

Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.


Asunto(s)
División Celular , Linaje de la Célula , ADN Mitocondrial , Aptitud Genética , Heteroplasmia , Selección Genética , Análisis de la Célula Individual , Animales , Femenino , Humanos , Ratones , División Celular/genética , Línea Celular , Linaje de la Célula/genética , ADN Mitocondrial/genética , Edición Génica , Heteroplasmia/genética , Mitocondrias/genética , Mutación , Análisis de la Célula Individual/métodos
2.
Nature ; 620(7975): 839-848, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587338

RESUMEN

Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.


Asunto(s)
Núcleo Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Heteroplasmia , Mitocondrias , Anciano , Humanos , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Estudio de Asociación del Genoma Completo , Heteroplasmia/genética , Mitocondrias/genética , Núcleo Celular/genética , Alelos , Polimorfismo de Nucleótido Simple , Mutación INDEL , G-Cuádruplex
3.
Cell ; 152(3): 642-54, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23333102

RESUMEN

Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Epigénesis Genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Núcleo Celular , Senescencia Celular , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Especificidad de Órganos
4.
PLoS Biol ; 21(5): e3002117, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37220109

RESUMEN

There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.


Asunto(s)
Longevidad , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Ratones , Envejecimiento , Hipoxia , Oxígeno , Modelos Animales de Enfermedad , Drosophila , Saccharomyces cerevisiae , Mamíferos
5.
Cell ; 147(7): 1628-39, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196736

RESUMEN

Hundreds of chromatin regulators (CRs) control chromatin structure and function by catalyzing and binding histone modifications, yet the rules governing these key processes remain obscure. Here, we present a systematic approach to infer CR function. We developed ChIP-string, a meso-scale assay that combines chromatin immunoprecipitation with a signature readout of 487 representative loci. We applied ChIP-string to screen 145 antibodies, thereby identifying effective reagents, which we used to map the genome-wide binding of 29 CRs in two cell types. We found that specific combinations of CRs colocalize in characteristic patterns at distinct chromatin environments, at genes of coherent functions, and at distal regulatory elements. When comparing between cell types, CRs redistribute to different loci but maintain their modular and combinatorial associations. Our work provides a multiplex method that substantially enhances the ability to monitor CR binding, presents a large resource of CR maps, and reveals common principles for combinatorial CR function.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Genómica/métodos , Código de Histonas , Cromatina/química , Ensamble y Desensamble de Cromatina , Células Madre Embrionarias , Genoma , Humanos , Células K562
7.
Genome Res ; 31(10): 1952-1969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33888511

RESUMEN

Recently developed single-cell technologies allow researchers to characterize cell states at ever greater resolution and scale. Caenorhabditis elegans is a particularly tractable system for studying development, and recent single-cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns give insight about gene function and into the biochemical state of different cell types; recent advances in other single-cell genomics technologies can now also characterize the regulatory context of the genome that gives rise to these gene expression levels at a single-cell resolution. To explore the regulatory DNA of individual cell types in C. elegans, we collected single-cell chromatin accessibility data using the sci-ATAC-seq assay in L2 larvae to match the available single-cell RNA-seq data set. By using a novel implementation of the latent Dirichlet allocation algorithm, we identify 37 clusters of cells that correspond to different cell types in the worm, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation.


Asunto(s)
Caenorhabditis elegans , Cromatina , Animales , Caenorhabditis elegans/genética , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , ADN/genética , Regulación de la Expresión Génica
8.
Metabolomics ; 20(2): 36, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446263

RESUMEN

INTRODUCTION: Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE: To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS: We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS: Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION: Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.


Asunto(s)
Enfermedades Mitocondriales , Sepsis , Choque Séptico , Humanos , Aminoácidos , N-Formilmetionina , Metabolómica , Metionina , Ácido Láctico , Racemetionina
9.
PLoS Comput Biol ; 19(5): e1011049, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146053

RESUMEN

Single cell ATAC-seq (scATAC-seq) enables the mapping of regulatory elements in fine-grained cell types. Despite this advance, analysis of the resulting data is challenging, and large scale scATAC-seq data are difficult to obtain and expensive to generate. This motivates a method to leverage information from previously generated large scale scATAC-seq or scRNA-seq data to guide our analysis of new scATAC-seq datasets. We analyze scATAC-seq data using latent Dirichlet allocation (LDA), a Bayesian algorithm that was developed to model text corpora, summarizing documents as mixtures of topics defined based on the words that distinguish the documents. When applied to scATAC-seq, LDA treats cells as documents and their accessible sites as words, identifying "topics" based on the cell type-specific accessible sites in those cells. Previous work used uniform symmetric priors in LDA, but we hypothesized that nonuniform matrix priors generated from LDA models trained on existing data sets may enable improved detection of cell types in new data sets, especially if they have relatively few cells. In this work, we test this hypothesis in scATAC-seq data from whole C. elegans nematodes and SHARE-seq data from mouse skin cells. We show that nonsymmetric matrix priors for LDA improve our ability to capture cell type information from small scATAC-seq datasets.


Asunto(s)
Algoritmos , Caenorhabditis elegans , Animales , Ratones , Caenorhabditis elegans/genética , Teorema de Bayes , Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de la Célula Individual/métodos
10.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33174596

RESUMEN

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Asunto(s)
Bases de Datos de Proteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Proteoma/metabolismo , Animales , Teorema de Bayes , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Conjuntos de Datos como Asunto , Humanos , Internet , Aprendizaje Automático , Espectrometría de Masas , Ratones , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Proteoma/clasificación , Proteoma/genética , Programas Informáticos
11.
Nature ; 473(7345): 43-9, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21441907

RESUMEN

Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.


Asunto(s)
Fenómenos Fisiológicos Celulares , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Regulación de la Expresión Génica , Genoma Humano/genética , Células Hep G2 , Humanos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Factores de Transcripción/genética
12.
J Biol Chem ; 290(33): 20044-59, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26085101

RESUMEN

Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Insulina/metabolismo , Insulisina/antagonistas & inhibidores , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacocinética , Células HEK293 , Humanos , Insulisina/química , Modelos Moleculares , Proteolisis
13.
Bioorg Med Chem Lett ; 25(5): 998-1008, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25630223

RESUMEN

The pharmaceutical industry is currently facing multiple challenges, in particular the low number of new drug approvals in spite of the high level of R&D investment. In order to improve target selection and assess properly the clinical hypothesis, it is important to start building an integrated drug discovery approach during Lead Generation. This should include special emphasis on evaluating target engagement in the target tissue and linking preclinical to clinical readouts. In this review, we would like to illustrate several strategies and technologies for assessing target engagement and the value of its application to medicinal chemistry efforts.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Animales , Humanos , Mediciones Luminiscentes/métodos , Imagen Óptica/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Tomografía de Emisión de Positrones/métodos
14.
Bioorg Med Chem ; 23(5): 996-1010, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25661449

RESUMEN

Trypanothione reductase (TR) is an enzyme critical to the maintenance of the thiol redox balance in trypanosomatids, including the genera Trypanosoma and Leishmania that are parasites responsible for several serious diseases. Analogs of clomipramine were prepared since clomipramine is reported to inhibit TR and cure mice infected with trypanosomes, however its psychotropic activity precludes its use as an anti-trypanosomal therapeutic. The clomipramine analogs contained a tricyclic dibenzosuberyl moiety. Additionally a series of polyamines with N-dibenzosuberyl substituents were prepared. All compounds studied were competitive inhibitors of TR and showed trypanocidal activities against Trypanosoma brucei in vitro. The analogs of clomipramine were poor inhibitors of TR, whereas the polyamine derivatives were effective TR inhibitors with the most potent compound, N(4),N(8)-bis(dibenzosuberyl)spermine (7), having a Ki value of 0.26µM. However, compound (7) did not prolong the lives of mice infected with trypanosomes. Analysis of docking studies indicated: the tricyclic groups of inhibitors bind at four distinct hydrophobic regions in the active site of TR; the importance of the chlorine substituent of clomipramine in binding to TR; and binding of the dibenzosuberyl groups of (7) occur at separate and distinct hydrophobic regions within the active site of TR.


Asunto(s)
Clomipramina/análogos & derivados , Inhibidores Enzimáticos/farmacología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Poliaminas/farmacología , Tripanocidas/farmacología , Animales , Clomipramina/química , Inhibidores Enzimáticos/química , Ratones , Simulación del Acoplamiento Molecular , Poliaminas/química , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología
15.
medRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711677

RESUMEN

Human mitochondria contain a high copy number, maternally transmitted genome (mtDNA) that encodes 13 proteins required for oxidative phosphorylation. Heteroplasmy arises when multiple mtDNA variants co-exist in an individual and can exhibit complex dynamics in disease and in aging. As all proteins involved in mtDNA replication and maintenance are nuclear-encoded, heteroplasmy levels can, in principle, be under nuclear genetic control, however this has never been shown in humans. Here, we develop algorithms to quantify mtDNA copy number (mtCN) and heteroplasmy levels using blood-derived whole genome sequences from 274,832 individuals of diverse ancestry and perform GWAS to identify nuclear loci controlling these traits. After careful correction for blood cell composition, we observe that mtCN declines linearly with age and is associated with 92 independent nuclear genetic loci. We find that nearly every individual carries heteroplasmic variants that obey two key patterns: (1) heteroplasmic single nucleotide variants are somatic mutations that accumulate sharply after age 70, while (2) heteroplasmic indels are maternally transmitted as mtDNA mixtures with resulting levels influenced by 42 independent nuclear loci involved in mtDNA replication, maintenance, and novel pathways. These nuclear loci do not appear to act by mtDNA mutagenesis, but rather, likely act by conferring a replicative advantage to specific mtDNA molecules. As an illustrative example, the most common heteroplasmy we identify is a length variant carried by >50% of humans at position m.302 within a G-quadruplex known to serve as a replication switch. We find that this heteroplasmic variant exerts cis -acting genetic control over mtDNA abundance and is itself under trans -acting genetic control of nuclear loci encoding protein components of this regulatory switch. Our study showcases how nuclear haplotype can privilege the replication of specific mtDNA molecules to shape mtCN and heteroplasmy dynamics in the human population.

16.
J Med Chem ; 66(23): 15960-15976, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37992274

RESUMEN

The identification of clinical candidate LY3522348 (compound 23) is described. LY3522348 is a highly selective, oral dual inhibitor of human ketohexokinase isoforms C and A (hKHK-C, hKHK-A). Optimization began with highly efficient (S)-2-(2-methylazetidin-1-yl)-6-(1H-pyrazol-4-yl)-4-(trifluoromethyl)nicotinonitrile (3). Efforts focused on developing absorption, distribution, metabolism, potency, and in vitro safety profiles to support oral QD dosing in patients. Structure-based design leveraged vectors for substitution of the pyrazole ring, which provided an opportunity to interact with several different proximal amino acid residues in the protein. LY3522348 displayed a robust pharmacodynamic response in a mouse model of fructose metabolism and was advanced into clinical trials.


Asunto(s)
Fructoquinasas , Ratones , Animales , Humanos
17.
J Med Chem ; 65(20): 13892-13909, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36197449

RESUMEN

Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP.


Asunto(s)
Inhibidores Enzimáticos , Proteínas Tirosina Fosfatasas , Ratones , Animales , Peso Molecular , Proteínas Tirosina Fosfatasas/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
18.
Pediatr Dent ; 33(5): 409-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22104709

RESUMEN

PURPOSE: The purpose of this survey was to assess the attitudes, behavior, and demographics of general dentists in Nebraska regarding their providing oral health care to patients with special health care needs (PSHCN). METHODS: A 14-item questionnaire and accompanying cover letter were sent to 800 licensed general dentists in Nebraska. The survey asked for the dentists' demographic information and questions about their PSCHN. Responses to the questionnaire were tabulated, and percent frequency distributions for responses to each item were computed. RESULTS: Of the 800 surveys sent, 371 (approximately 46%) were returned. Solo practitioners were more likely to report seeing PSCHN (P<.001). Most respondents see all ages, but approximately 10% see only PSCHN over 18-years-old. The most common reasons given to improve the practitioners' ability to care for PSCHN were improved reimbursement (approximately 35%) and more continuing education (approximately 36%). CONCLUSIONS: These data indicate that most general dentists surveyed in Nebraska see special needs patients of all ages. The most common reasons for not seeing more special needs patients were the level of the patient's disease, the patient's behavior, and insufficient training/experience.


Asunto(s)
Actitud del Personal de Salud , Atención Dental para la Persona con Discapacidad/psicología , Odontología General , Pautas de la Práctica en Odontología/estadística & datos numéricos , Adulto , Factores de Edad , Control de la Conducta/métodos , Demografía , Educación Continua en Odontología , Femenino , Odontología General/educación , Odontología General/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Nebraska , Evaluación de Necesidades , Remuneración , Encuestas y Cuestionarios , Adulto Joven
19.
J Clin Pediatr Dent ; 34(4): 291-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20831128

RESUMEN

OBJECTIVE: To assess the attitudes, behavior, and demographics of general dentists in the state of Nebraska with regard to overall prenatal oral health counseling for pregnant women. STUDY DESIGN: The survey asked for demographic information, number of years practicing dentistry, and patient base. The survey also asked questions about prenatal oral health counseling for pregnant women. A self-addressed stamped envelope was enclosed for dentists' returned responses. RESULTS: Out of the 800 surveys sent, 371 (46.4%) were returned. Nearly 50% of general dentists in Nebraska who responded to the survey do not provide any prenatal counseling (45.6%) and 5.9% provide prenatal counseling only once a year. There were no correlations between providing prenatal counseling and age of general dentists, gender of general dentists, type of practice, and length of time in practice or additional training completed. When asked why they do not provide prenatal counseling, 19.7% say that it is not a priority for the office and 9.5% do not provide prenatal counseling because they are not reimbursed by a third party payer. CONCLUSIONS: Fifty percent of general practitioners do provide prenatal counseling. The most common reason for not providing prenatal counseling was it is not a priority for the office and the parents are not interested.


Asunto(s)
Consejo , Atención Odontológica , Odontología General/estadística & datos numéricos , Pautas de la Práctica en Odontología/estadística & datos numéricos , Embarazo , Atención Prenatal , Adulto , Factores de Edad , Actitud del Personal de Salud , Consejo/economía , Atención Odontológica/economía , Honorarios Odontológicos , Femenino , Odontología General/educación , Educación en Salud Dental , Humanos , Masculino , Persona de Mediana Edad , Nebraska , Educación del Paciente como Asunto , Atención Prenatal/economía , Factores Sexuales , Factores de Tiempo , Adulto Joven
20.
Genome Biol ; 21(1): 81, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228704

RESUMEN

The human epigenome has been experimentally characterized by thousands of measurements for every basepair in the human genome. We propose a deep neural network tensor factorization method, Avocado, that compresses this epigenomic data into a dense, information-rich representation. We use this learned representation to impute epigenomic data more accurately than previous methods, and we show that machine learning models that exploit this representation outperform those trained directly on epigenomic data on a variety of genomics tasks. These tasks include predicting gene expression, promoter-enhancer interactions, replication timing, and an element of 3D chromatin architecture.


Asunto(s)
Aprendizaje Profundo , Epigenoma , Momento de Replicación del ADN , Elementos de Facilitación Genéticos , Expresión Génica , Genómica , Humanos , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA