Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272563

RESUMEN

This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.


Asunto(s)
Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Extremidades/crecimiento & desarrollo , Vertebrados/genética , Animales , Aniversarios y Eventos Especiales , Regulación del Desarrollo de la Expresión Génica/genética , Publicaciones
2.
Genesis ; 57(7-8): e23296, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31021058

RESUMEN

This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/genética , Retinoides/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Transducción de Señal
3.
Bioessays ; 39(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28699180

RESUMEN

We show the vertebrate anterior -posterior axis is made by time space translation (TST). 1/ TST of Hox temporal to spatial collinearity makes the trunk part of the axis. 2/TST continues into the head. 3/ TST is mediated by collinear Hox-Hox interactions. 4/ 'Decision points' involving signalling pathways separate axial domains.


Asunto(s)
Tipificación del Cuerpo/fisiología , Vertebrados/embriología , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Morfogénesis/genética , Morfogénesis/fisiología , Vertebrados/genética
4.
Proc Natl Acad Sci U S A ; 110(49): 19826-31, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24255112

RESUMEN

The excitable cells of Dictyostelium discoideum show traveling waves of signaling and generate a variety of complex wave forms during their morphogenesis. Important among these wave forms is the 3D spiral or scroll wave, which has been proposed previously to have a twisted variant: the "turbine wave." Herein we argue that a D. discoideum scroll or concentric wave territory containing prespore and prestalk cell types can undergo "dislocation": a wave field that initially controls aggregation of a whole developing population of Dictyostelium cells splits into two. This process leads to discontinuity between two connected domains of wave propagation and to specific phenomena, including high-frequency concentric pacemaker activity by the slime mold's scroll-wave tip. The resulting morphogenetic events reveal a unique mechanism in morphogenesis.


Asunto(s)
Movimiento Celular/fisiología , Dictyostelium/fisiología , Modelos Biológicos , Morfogénesis/fisiología , Vertebrados/embriología , Animales , Somitos/fisiología
5.
J Dev Biol ; 11(3)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37489332

RESUMEN

How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.

6.
Dev Growth Differ ; 53(9): 982-93, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22150153

RESUMEN

We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.


Asunto(s)
Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Evolución Biológica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animales , Proteína con Homeodominio Antennapedia/biosíntesis , Tipificación del Cuerpo/genética , Drosophila/embriología , Drosophila/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Genómica/métodos , Proteínas de Homeodominio/biosíntesis , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/biosíntesis
7.
Dev Dyn ; 239(1): 126-39, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19623617

RESUMEN

Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).


Asunto(s)
Tipificación del Cuerpo/fisiología , Sistema Nervioso Central/embriología , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Homeobox/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/fisiología , Proteínas de Xenopus/fisiología , Animales , Cartilla de ADN/genética , Hibridación in Situ , Microinyecciones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
8.
Dev Biol ; 332(1): 82-9, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19409887

RESUMEN

It is generally assumed that the characteristic deregionalized body plan of species with a snake-like morphology evolved through a corresponding homogenization of Hox gene expression domains along the primary axis. Here, we examine the expression of Hox genes in snake embryos and show that a collinear pattern of Hox expression is retained within the paraxial mesoderm of the trunk. Genes expressed at the anterior and most posterior, regionalized, parts of the skeleton correspond to the expected anatomical boundaries. Unexpectedly however, also the dorsal (thoracic), homogenous rib-bearing region of trunk, is regionalized by unconventional gradual anterior limits of Hox expression that are not obviously reflected in the skeletal anatomy. In the lateral plate mesoderm we also detect regionalized Hox expression yet the forelimb marker Tbx5 is not restricted to a rudimentary forelimb domain but is expressed throughout the entire flank region. Analysis of several Hox genes in a caecilian amphibian, which convergently evolved a deregionalized body plan, reveals a similar global collinear pattern of Hox expression. The differential expression of posterior, vertebra-modifying or even rib-suppressing Hox genes within the dorsal region is inconsistent with the homogeneity in vertebral identity. Our results suggest that the evolution of a deregionalized, snake-like body involved not only alterations in Hox gene cis-regulation but also a different downstream interpretation of the Hox code.


Asunto(s)
Anfibios/embriología , Tipificación del Cuerpo , Proteínas de Homeodominio/genética , Serpientes/embriología , Azul Alcián/metabolismo , Anfibios/genética , Animales , Antraquinonas/metabolismo , Huesos/anatomía & histología , Huesos/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Lagartos/embriología , Lagartos/genética , Mesodermo/metabolismo , Ratones , Serpientes/genética , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
10.
Front Cell Dev Biol ; 7: 257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850338

RESUMEN

The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.

11.
J Comp Neurol ; 506(2): 211-23, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18022953

RESUMEN

Knockout of the Nkx2.1 (Titf-1) homeobox gene in the mouse leads to severe malformation and size reduction of the basal telencephalon/preoptic area and basal hypothalamus, indicating an important role of this gene in forebrain patterning. Here we show that abrogation of the orthologous gene in the frog Xenopus laevis by way of morpholino knockdown also affects the relative size of major regions in both the telencephalon (subpallium versus pallium) and diencephalon (hypothalamus versus thalamus). Remarkably, while a similar effect on the telencephalon was noted previously in Nkx2.1-knockout mice, the effect on the diencephalon seems to be specific for Xenopus. This difference may be explained by the partially dissimilar expression of the orthologous genes in the forebrain of Xenopus and mouse. In both species Nkx2.1 is expressed in the basal telencephalon/preoptic area and basal hypothalamus, but in Xenopus this gene is additionally expressed in the alar hypothalamus. Phylogenetic comparison of Nkx2.1 expression in the forebrain suggests that the expression in the basal telencephalon-preoptic region and alar hypothalamus appeared in the transition from jawless to jawed vertebrates, but the alar hypothalamic expression was later dramatically reduced during evolution to birds and mammals. Our study suggests that changes in the regulation of Nkx2.1 expression have played an important role on the evolution of forebrain development, and emphasizes the potential of the combined analysis of expression and function of master control genes in different vertebrates for unraveling the origin of brain complexity and diversity.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/fisiología , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Proteínas de Xenopus/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Proteínas Nucleares , Factor Nuclear Tiroideo 1 , Factores de Transcripción , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/fisiología , Xenopus laevis
12.
Mech Dev ; 124(9-10): 668-81, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17703924

RESUMEN

The formation of the vertebrate body axis during gastrulation strongly depends on a dorsal signaling centre, the Spemann organizer as it is called in amphibians. This organizer affects embryonic development by self-differentiation, regulation of morphogenesis and secretion of inducing signals. Whereas many molecular signals and mechanisms of the organizer have been clarified, its function in anterior-posterior pattern formation remains unclear. We dissected the organizer functions by generally blocking organizer formation and then restoring a single function. In experiments using a dominant inhibitory BMP receptor construct (tBr) we find evidence that neural activation by antagonism of the BMP pathway is the organizer function that enables the establishment of a detailed anterior-posterior pattern along the trunk. Conversely, the exclusive inhibition of neural activation by expressing a constitutive active BMP receptor (hAlk-6) in the ectoderm prohibits the establishment of an anterior-posterior pattern, even though the organizer itself is still intact. Thus, apart from the formerly described separation into a head and a trunk/tail organizer, the organizer does not deliver positional information for anterior-posterior patterning. Rather, by inducing neurectoderm, it makes ectodermal cells competent to receive patterning signals from the non-organizer mesoderm and thereby enable the formation of a complete and stable AP pattern along the trunk.


Asunto(s)
Abdomen/embriología , Tipificación del Cuerpo/fisiología , Organizadores Embrionarios/fisiología , Tórax/embriología , Abdomen/efectos de la radiación , Animales , Tipificación del Cuerpo/efectos de la radiación , Inducción Embrionaria/fisiología , Inducción Embrionaria/efectos de la radiación , Mesodermo/citología , Mesodermo/fisiología , Mesodermo/efectos de la radiación , Neuronas/citología , Neuronas/fisiología , Neuronas/efectos de la radiación , Organizadores Embrionarios/citología , Organizadores Embrionarios/efectos de la radiación , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Tórax/efectos de la radiación , Rayos Ultravioleta , Xenopus laevis
13.
Front Cell Dev Biol ; 6: 102, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30234110

RESUMEN

A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox-Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo's main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via "decision points," separating different domains on the axis.

14.
J Biosci ; 43(2): 375-390, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29872025

RESUMEN

During early embryonic development, the vertebrate main body axis is segmented from head-to-tail into somites. Somites emerge sequentially from the presomitic mesoderm (PSM) as a consequence of oscillatory waves of genetic activity, called somitogenesis waves. Here, we discuss the implications of the dynamic patterns of early X-Delta-2 expression in the prospective somites (somitomeres) of Xenopus laevis. We report that right somitomeres normally emerge before left to form chiral structures (i.e. structures having clockwise or counter-clockwise handedness). From our observations, we infer that somitogenesis waves are normally counter-clockwise spirals, a novel dynamic mechanism for the control of handedness development in Xenopus. We propose that the same mechanism could control handedness development in all vertebrate embryos, providing a dynamical basis for the current asymmetric molecular transport model for generating left-right asymmetry.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Mesodermo/crecimiento & desarrollo , Somitos/crecimiento & desarrollo , Xenopus laevis/crecimiento & desarrollo
15.
PLoS One ; 12(4): e0175287, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399140

RESUMEN

Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3' to 5' order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin-dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.


Asunto(s)
Tipificación del Cuerpo/genética , Genes Homeobox , Vertebrados/genética , Animales , Xenopus/embriología
19.
PLoS One ; 6(3): e18010, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21464931

RESUMEN

Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Regulación hacia Abajo/genética , Ectodermo/metabolismo , Gastrulación/genética , Proteínas de Homeodominio/genética , Regulación hacia Arriba/genética , Proteínas de Xenopus/genética
20.
Int J Dev Biol ; 55(10-12): 899-908, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22252486

RESUMEN

Hox collinearity is a spectacular phenomenon that has excited life scientists since its discovery in 1978. Two mechanisms have been proposed to explain the spatially sequential pattern of Hox gene expression in animal embryonic development: interactions among Hox genes, or the progressive opening of chromatin in the Hox clusters, from 3' to 5'. A review of the evidence across different species and developmental stages points to the universal involvement of trans-acting factors and cell-cell interactions. The evidence focuses attention on interactions between Hox genes and on the vertebrate somitogenesis clock. These novel conclusions open new perspectives for the field.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Animales , Cromatina/química , Cromatina/metabolismo , Biología Evolutiva , Drosophila , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Humanos , Modelos Anatómicos , Modelos Biológicos , Modelos Genéticos , Estructura Terciaria de Proteína , Transducción de Señal , Especificidad de la Especie , Factores de Tiempo , Transcripción Genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA