Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 16(1): R12, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24457069

RESUMEN

INTRODUCTION: Upregulation of PI3K/Akt/mTOR signalling in endocrine-resistant breast cancer (BC) has identified mTOR as an attractive target alongside anti-hormones to control resistance. RAD001 (everolimus/Afinitor®), an allosteric mTOR inhibitor, is proving valuable in this setting; however, some patients are inherently refractory or relapse during treatment requiring alternative strategies. Here we evaluate the potential for novel dual mTORC1/2 mTOR kinase inhibitors, exemplified by AZD8055, by comparison with RAD001 in ER + endocrine resistant BC cells. METHODS: In vitro models of tamoxifen (TamR) or oestrogen deprivation resistance (MCF7-X) were treated with RAD001 or AZD8055 alone or combined with anti-hormone fulvestrant. Endpoints included growth, cell proliferation (Ki67), viability and migration, with PI3K/AKT/mTOR signalling impact monitored by Western blotting. Potential ER cross-talk was investigated by immunocytochemistry and RT-PCR. RESULTS: RAD001 was a poor growth inhibitor of MCF7-derived TamR and MCF7-X cells (IC50 ≥1 µM), rapidly inhibiting mTORC1 but not mTORC2/AKT signalling. In contrast AZD8055, which rapidly inhibited both mTORC1 and mTORC2/AKT activity, was a highly effective (P <0.001) growth inhibitor of TamR (IC50 18 nM) and MCF7-X (IC50 24 nM), and of a further T47D-derived tamoxifen resistant model T47D-tamR (IC50 19 nM). AZD8055 significantly (P <0.05) inhibited resistant cell proliferation, increased cell death and reduced migration. Furthermore, dual treatment of TamR or MCF7-X cells with AZD8055 plus fulvestrant provided superior control of resistant growth versus either agent alone (P <0.05). Co-treating with AZD8055 alongside tamoxifen (P <0.01) or oestrogen deprivation (P <0.05) also effectively inhibited endocrine responsive MCF-7 cells. Although AZD8055 inhibited oestrogen receptor (ER) ser167 phosphorylation in TamR and MCF7-X, it had no effect on ER ser118 activity or expression of several ER-regulated genes, suggesting the mTOR kinase inhibitor impact was largely ER-independent. The capacity of AZD8055 for ER-independent activity was further evidenced by growth inhibition (IC5018 and 20 nM) of two acquired fulvestrant resistant models lacking ER. CONCLUSIONS: This is the first report demonstrating dual mTORC1/2 mTOR kinase inhibitors have potential to control acquired endocrine resistant BC, even under conditions where everolimus fails. Such inhibitors may prove of particular benefit when used alongside anti-hormonal treatment as second-line therapy in endocrine resistant disease, and also potentially alongside anti-hormones during the earlier endocrine responsive phase to hinder development of resistance.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Antagonistas del Receptor de Estrógeno/farmacología , Morfolinas/farmacología , Sirolimus/análogos & derivados , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Antineoplásicos Hormonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Estradiol/análogos & derivados , Estradiol/farmacología , Antagonistas de Estrógenos/farmacología , Everolimus , Femenino , Fulvestrant , Humanos , Inmunosupresores/farmacología , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Tamoxifeno/farmacología
2.
Horm Mol Biol Clin Investig ; 5(2): 67-77, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25961242

RESUMEN

Using MCF7 breast cancer cells, it has been shown that antihormones promote expression/activity of oestrogen-repressed tyrosine kinases, notably EGFR, HER2 and Src. These inductive events confer responsiveness to targeted inhibitors (e.g., gefitinib, trastuzumab, saracatinib). We observed that these antihormone-induced phenomena are common to ER+HER2- and ER+HER2+ breast cancer models in vitro, where targeting of EGFR, HER2 or Src alongside antihormone improves antitumour response and delays/prevents endocrine resistance. Such targeted inhibitors also subvert acquired endocrine resistant cells which retain increased EGFR, HER2 and Src (e.g., TAMR and FASR models derived after 6-12 months of tamoxifen or Faslodex treatment). Thus, antihormone-induced tyrosine kinases comprise "compensatory signalling" crucial in limiting maximal initial antihormone response and subsequently driving acquired resistance in vitro. However, despite such convincing preclinical findings from our group and others, clinical trials examining equivalent antigrowth factor strategies have proved relatively disappointing. Our new studies deciphering underlying causes reveal that further antihormone-promoted events could be pivotal in vivo. Firstly, Faslodex induces HER3 and HER4 which sensitise ER+ cells to heregulin, a paracrine growth factor that overcomes endocrine response and diminishes antitumour effect of agents targeting EGFR, HER2 or Src alongside antihormone. Secondly, extended antihormone exposure (experienced by ER+ cells prior to adjuvant clinical relapse) can "reprogramme" the compensatory kinase profile in vitro, hindering candidate antigrowth factor targeting of endocrine resistance. Faslodex resistant cells maintained with this antihormone for 3 years in vitro lose EGFR/HER2 dependency, gaining alternative mitogenic/invasion kinases. Deciphering these previously unrecognised antihormone-induced events could provide superior treatments to control endocrine relapse in the clinic.

3.
Prostate ; 52(1): 59-68, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11992620

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGF-R) autophosphorylation is essential for its intracellular mitogenic signaling via the MAPK pathway and for interaction in other cellular processes. Inhibition of this activity in tumor cells that predominantly utilise EGF-R therefore offers an alternative approach to therapy. METHODS: The ability of a specific inhibitor of EGF-R tyrosine kinase, ZM 252868, (TKI) to alter various parameters related to growth in DU145 and PC3 cell lines was investigated, by immunocytochemistry, Northern blotting, Western blotting and invasion assays. RESULTS: In DU145 cultures, the total cell population and number of cells in cell cycle decreased in the presence of TKI whilst the apoptotic rate was significantly increased. Reduction in autophosphorylation of the EGF-R, membrane expression of EGF-R, activation of the MAPK, p38, and JNK enzymes and the invasive capacity of DU145 cells was observed in the TKI treated cells. Under the same conditions, PC3 cell growth and EGF-R expression and MAPK activation were not affected. The use of inhibitors of intracellular signaling indicated that the DU145 cells, in contrast to PC3 cells, predominantly utilize EGF-R activation of the MAPK signaling pathway for growth. CONCLUSIONS: In prostatic cancer patients, in whom androgen resistance has developed and whose tumors have upregulated EGF-R for growth, specific TKI's may offer an important therapy option.


Asunto(s)
Adenocarcinoma/patología , Inhibidores Enzimáticos/farmacología , Receptores ErbB/fisiología , Neoplasias de la Próstata/patología , Apoptosis , Northern Blotting , Western Blotting , Recuento de Células , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Inmunohistoquímica , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Invasividad Neoplásica , Fosforilación , Quinazolinas/farmacología , ARN Mensajero/análisis , Transducción de Señal , Factor de Crecimiento Transformador alfa/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA