Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemistry ; 30(31): e202400195, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563653

RESUMEN

Framework and polymeric nanoreactors (NRs) have distinct advantages in improving chemical reaction efficiency in the tumor microenvironment (TME). Nanoreactor-loaded oxidoreductase enzyme is activated by tumor acidity to produce H2O2 by increasing tumor oxidative stress. High levels of H2O2 induce self-destruction of the vesicles by releasing quinone methide to deplete glutathione and suppress the antioxidant potential of cancer cells. Therefore, the synergistic effect of the enzyme-loaded nanoreactors results in efficient tumor ablation via suppressing cancer-cell metabolism. The main driving force would be to take advantage of the distinct metabolic properties of cancer cells along with the high peroxidase-like activity of metalloenzyme/metalloprotein. A cascade strategy of dual enzymes such as glucose oxidase (GOx) and nitroreductase (NTR) wherein the former acts as an O2-consuming agent such as overexpression of NTR and further amplified NTR-catalyzed release for antitumor therapy. The design of cascade bioreductive hypoxia-responsive drug delivery via GOx regulates NTR upregulation and NTR-responsive nanoparticles. Herein, we discuss tumor hypoxia, reactive oxygen species (ROS) formation, and the effectiveness of these therapies. Nanoclusters in cascaded enzymes along with chemo-radiotherapy with synergistic therapy are illustrated. Finally, we outline the role of the nanoreactor strategy of cascading enzymes along with self-synergistic tumor therapy.


Asunto(s)
Glucosa Oxidasa , Neoplasias , Microambiente Tumoral , Humanos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Nitrorreductasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Estrés Oxidativo/efectos de los fármacos
2.
Small ; 19(29): e2301675, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170689

RESUMEN

Precise configurations of isolated metal atoms in nitrogen-doped carbon materials with 2D single or multilayers and 3D nanoarchitectures are gaining attention owing to their good stability and activity at high current densities. Atomic metal-Nx moieties, which utilize maximum atoms to attain high intrinsic activity and novel electronic architecture of support materials, facilitate strong interaction between the central metal atom and support matrix. However, resource consumption is considerably high due to the inferior atomic utilization of active sites. Therefore, energy-efficient electrochemical processes are needed to develop advanced isolated single-atom architecture, which would provide high atom-utilization and good durability. Herein, the concepts of atomically dispersed metal sites in single-atom and alloy architectures and their electronic features associated with structural evolution are discussed. Opportunities and challenges associated with the use of isolated single-atoms in 2D materials are discussed based on their unique electronic defects, low-valence central metals, mechanical flexibility, and maximum access to metal sites. This insightful revisit into the engineering of single-atom and alloy architectures would provide a profound understanding of electronic modulations and regulation of geometric characteristics, and unravels potential directions for electrochemical energy conversion, charge storage, and sensing processes.

3.
Chemistry ; 29(38): e202301117, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147877

RESUMEN

Environmental protection associated with renewable energy is among the most critical challenges for translational ion-capture based on capacitive storage of ions in electrical double layers at the interface of electrode and electrolyte. Electric double-layer capacitance with charge induction and faradaic pseudo-capacitance with charge transfer classifies the capacitance of the electrochemical interface. The electrochemical interface in most energy technologies involves porous and pseudocapacitive redox materials that offer varying degrees of electrolyte confinement. In this review, we discuss the factors affecting water desalination, such as the effect of nanopores for ion capture, the ion sieving effect, the effect of hydration energy, and hydration radius in the carbon sub-nanometer pore. Moreover, the surface phenomena of electrodes, including carbon corrosion, and the potential of zero charge to control the oxidation of carbon electrodes are explained along with protection mechanisms. The various capacitive deionization (CDI) operations and the corresponding electrochemical cell technologies are briefly introduced, including the significance of double-layer charging materials with faradaic intercalation, which suffer less from co-ion expulsion. Finally, we revisit the effects of various nanoarchitectures and the construction of capacitive deionization electrodes for clean water technology.


Asunto(s)
Carbono , Purificación del Agua , Carbono/química , Capacidad Eléctrica , Iones , Electrodos , Agua
4.
Small ; 18(52): e2203147, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36323587

RESUMEN

The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.

5.
J Nanosci Nanotechnol ; 19(7): 3673-3685, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30764925

RESUMEN

Hard- and soft-templating approaches are one of potential strategies for the fabrication of functional nanoporous carbon materials with desired morphologies and properties. Enormous efforts have been paid for understanding the synthetic mechanisms that strongly influence the materials design and applications. All of these investigations are crucial to encourage the application of hard- and soft-templating approaches for the precise synthesis of nanoporous carbon materials. In this review, we mainly summarize significant works employing different synthetic methods for making carbon materials with various pore sizes and functionalities. The content of the review article contains: (i) Hard-templating synthesis of microporous carbon from zeolites; (ii) Hard-templating synthesis of mesoporous carbon from mesoporous silica; (iii) Hard-templating synthesis of macroporous carbon; and (iv) Soft-templating synthesis of mesoporous carbon. This review aims to provide a detailed glimpse of hard- and soft-templating approaches for future development of functional nanoporous carbon materials.

6.
Waste Manag Res ; 37(11): 1063-1076, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31266435

RESUMEN

The treatment and disposal of industrial waste has become a critical economic and environmental issue with the ever-increasing rates of its generation. Industries in India, as major players in building the economy and GDP, expel about 7.4 million tons of hazardous waste annually, out of which around 3.98 million tons are recyclable for resource or energy recovery. India's scenario in the usage of alternative fuel and raw material is less than 1%, which reflects a huge quantum of hazardous waste for potential usage in alternative fuel and raw material. The Netherlands, with around 83% of total hazardous waste, is the highest user of hazardous waste as alternative fuel and raw material in cement kilns. Uncontrolled waste management degrades land, ground water and air quality, leading to health risks to humans, animals and the ecosystem. Presently, industrial waste in most cases is disposed to landfills after incineration, without utilizing the full potential of the wastes through recirculation. The present study analyzed the current situation of the treatment facilities for attaining a sustainable management system using waste as alternative fuel and raw material for the disposal of hazardous waste. Through the alternative fuel and raw material concept, hazardous wastes can be used as a substitute for fossil fuels and/or raw material in a few types of industries. This will surely enhance the efficient recirculation of industrial wastes. This paper presents the overall view of Indian hazardous-waste generating industries, their locations, the potential of wastes as alternate sources of fuel to other industries, the use of alternative fuel and raw material by cement industries and applicable regulatory requirements.


Asunto(s)
Residuos Peligrosos , Administración de Residuos , Ecosistema , Humanos , India , Países Bajos
7.
Small ; 14(27): e1702054, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845726

RESUMEN

An approach to assemble hierarchically ordered 3D arrangements of curved graphenic nanofragments for energy storage devices is described. Assembling them into well-defined interconnected macroporous networks, followed by removal of the template, results in spherical macroporous, mesoporous, and microporous carbon microball (3MCM) architectures with controllable features spanning nanometer to micrometer length scales. These structures are ideal porous electrodes and can serve as lithium-ion battery (LIB) anodes as well as capacitive deionization (CDI) devices. The LIBs exhibit high reversible capacity (up to 1335 mAh g-1 ), with great rate capability (248 mAh g-1 at 20 C) and a long cycle life (60 cycles). For CDI, the curved graphenic networks have superior electrosorption capacity (i.e., 5.17 mg g-1 in 0.5 × 10-3 m NaCl) over conventional carbon materials. The performance of these materials is attributed to the hierarchical structure of the graphenic electrode, which enables faster ion diffusion and low transport resistance.

8.
Chemistry ; 24(27): 6886-6904, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29205567

RESUMEN

Shrinkages derived from condensation of frameworks are one of the significant steps for fabricating demanded materials having unique morphologies and properties. Enormous efforts have been dedicated to understanding their mechanisms that are quite useful for the materials design. In this context, diversified measuring and observing tools have been facilitated to evaluate structural contractions and corresponding driving forces. All of the investigations are crucial to encourage the utilization of such shrinkages for the precise design of nanomaterials. In this review, we summarize significant works how to analyze shrinkages in multiscale during the synthesis of materials, which will be useful as a follow-up review to our latest contribution. Well-defined porous materials are also selected as a good candidate for understanding well-described shrinkages. This review aims to provide a detailed glimpse of the development of analyses on shrinking behaviors in multiscale for the materials design. Shrinking degree and direction in multiscale, which are driven by condensation of frameworks, are predominant for understanding and/or predicting final nanostructures of materials after shrinkages.

9.
Chem Rev ; 116(14): 8105-45, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27366938

RESUMEN

This review describes organometallic compounds and materials that are capable of mediating a rarely encountered but fundamentally important reaction: ß-alkyl elimination at the metal-Cα-Cß-R moiety, in which an alkyl group attached to the Cß atom is transferred to the metal or to a coordinated substrate. The objectives of this review are to provide a cohesive fundamental understanding of ß-alkyl-elimination reactions and to highlight its applications in olefin polymerization, alkane hydrogenolysis, depolymerization of branched polymers, ring-opening polymerization of cycloalkanes, and other useful organic reactions. To provide a coherent understanding of the ß-alkyl elimination reaction, special attention is given to conditions and strategies used to facilitate ß-alkyl-elimination/transfer events in metal-catalyzed olefin polymerization, which provide the well-studied examples.

10.
J Am Chem Soc ; 137(13): 4276-9, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25781479

RESUMEN

We develop a new concept to impart new functions to biocatalysts by combining enzymes and metal-organic frameworks (MOFs). The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-90 crystals via a de novo approach. We have carried out electron microscopy, X-ray diffraction, nitrogen sorption, electrophoresis, thermogravimetric analysis, and confocal microscopy to confirm that the ~10 nm catalase molecules are embedded in 2 µm single-crystalline ZIF-90 crystals with ~5 wt % loading. Because catalase is immobilized and sheltered by the ZIF-90 crystals, the composites show activity in hydrogen peroxide degradation even in the presence of protease proteinase K.


Asunto(s)
Biocatálisis , Catalasa/química , Catalasa/metabolismo , Nanoporos , Compuestos Organometálicos/química , Tamaño de la Partícula , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Peróxido de Hidrógeno/metabolismo , Imidazoles/química , Cinética , Modelos Moleculares , Conformación Proteica , Zeolitas/química
11.
Phys Chem Chem Phys ; 17(41): 27653-7, 2015 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-26428279

RESUMEN

This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4. The Fe3O4 nanoparticles were synthesized using co-precipitation techniques to a size of 28.2 nm and a magnetic saturation of 66.9 emu g(-1). Meanwhile, mesoporous titania nanoparticles (MTNs) with a particle diameter of 373 nm, a specific surface area of 236.3 m(2) g(-1), and a pore size of 2.8 nm were prepared by controlling the rate of hydrolysis. Magnetic colloidal crystals (a diameter of 10.2 µm) were formed by the aggregation of Fe3O4 and MTNs caused by the interface phenomena during solvent evaporation in emulsion. Even the anatase octahedrite produced from the colloidal crystal after a hydrothermal reaction retained a magnetic saturation of 2.8 emu g(-1). This study also investigates the photodegradation activity of our synthesized material as a photocatalyst, while utilizing its capability for magnetic separation to prove its usefulness in catalyst recycling.

12.
J Nanosci Nanotechnol ; 15(12): 9802-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26682415

RESUMEN

Monodisperse and mesoporous europium (Eu)-doped titania nanoparticles (denoted as Eu-MTNs) were prepared by a co-synthesis method with the presence of a cationic surfactant (i.e., CTAB). A maximum loading amount of 8 mol% of Eu could be successfully incorporated into the framework of MTNs. The synthesized Eu-MTNs samples were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM), with their luminescent property examined by photoluminescence (PL). Under ultraviolet irradiation, the Eu-MTNs samples exhibit several characteristic luminescence corresponding to 5D0-7F(j) for Eu+3 ions, which can be attributed to the energy transfer from titania nanocrystallite to Eu3+ ions dispersed in amorphous mesoporous titania region. The potential intracellular bio-imaging application of the synthesized Eu-MTN nanoparticles was demonstrated with a breast cancer cell line (i.e., BT-20). High biocompatibility and strong luminescence of the Eu-MTNs show great potential in biomedical applications.


Asunto(s)
Europio/química , Imagen Molecular/métodos , Nanopartículas/química , Titanio/química , Luminiscencia , Mediciones Luminiscentes/métodos , Microscopía Electrónica de Rastreo , Difracción de Rayos X
13.
Top Curr Chem ; 353: 41-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24842621

RESUMEN

The synthesis and chemistry of 5-(hydroxymethyl)furfural (HMF), 5-(chloromethyl)furfural (CMF), and levulinic acid (LA), three carbohydrate-derived platform molecules produced by the chemical-catalytic processing of lignocellulosic biomass, is reviewed. Starting from the historical derivation of these molecules and progressing through modern approaches to their production from biomass feedstocks, this review will then survey their principal derivative chemistries, with particular attention to aspects of commercial relevance, and discuss the relative merits of each molecule in the future of biorefining.


Asunto(s)
Biomasa , Furaldehído/análogos & derivados , Ácidos Levulínicos/síntesis química , Biocombustibles , Catálisis , Disacáridos/química , Furaldehído/síntesis química , Lignina/química , Monosacáridos/química
14.
Angew Chem Int Ed Engl ; 53(7): 1854-7, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24474249

RESUMEN

Dehydration of biomass-derived levulinic acid under solid acid catalysis and treatment of the resulting angelica lactone with catalytic K2 CO3 produces the angelica lactone dimer in excellent yield. This dimer serves as a novel feedstock for hydrodeoxygenation, which proceeds under relatively mild conditions with a combination of oxophilic metal and noble metal catalysts to yield branched C7 -C10 hydrocarbons in the gasoline volatility range. Considering that levulinic acid is available in >80 % conversion from raw biomass, a field-to-tank yield of drop-in, cellulosic gasoline of >60 % is possible.


Asunto(s)
4-Butirolactona/análogos & derivados , Celulosa/química , Hidrocarburos/síntesis química , Ácidos Levulínicos/química , 4-Butirolactona/química , Catálisis , Hidrólisis
15.
ACS Omega ; 9(25): 26805-26825, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947803

RESUMEN

Adherence to the principles of green chemistry in a biorefinery setting ensures energy efficiency, reduces the consumption of materials, simplifies reactor design, and rationalizes the process parameters for synthesizing affordable organic chemicals of desired functional efficacy and ingrained sustainability. The green chemistry metrics facilitate assessing the relative merits and demerits of alternative synthetic pathways for the targeted product(s). This work elaborates on how green chemistry has emerged as a transformative framework and inspired innovations toward the catalytic conversion of biomass-derived carbohydrates into fuels, chemicals, and synthetic polymers. Specific discussions have been incorporated on the judicious selection of feedstock, reaction parameters, reagents (stoichiometric or catalytic), and other synthetic auxiliaries to obtain the targeted product(s) in desired selectivity and yield. The prospects of a carbohydrate-centric biorefinery have been emphasized and research avenues have been proposed to eliminate the remaining roadblocks. The analyses presented in this review will steer to developing superior synthetic strategies and processes for envisaging a sustainable bioeconomy centered on biomass-derived carbohydrates.

16.
RSC Adv ; 14(30): 21553-21562, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979445

RESUMEN

Bis(indolyl)methanes (BIMs) are important heterocycle-containing molecular scaffolds that show remarkable biological and pharmacological activities. This work reports the synthesis of novel BIMs using carbohydrate-derived 5-substituted-2-furaldehydes as renewable reactants. Structural diversity was introduced in the BIMs as substituents in the indole and furaldehyde moieties. Various commonly encountered biorenewable carboxylic acids were screened as catalysts for the acid-catalyzed transformation under organic solvent-free conditions. All the novel BIMs were characterized by spectroscopic techniques (FTIR, 1H-NMR, 13C-NMR) and elemental analysis. The reaction was optimized on the reaction temperature, duration, catalyst type, and catalyst loading. The gluconic acid aqueous solution (GAAS) showed the best catalytic activity for the transformation, affording satisfactory isolated yields (68-96%) of the targeted BIMs under optimized conditions. The GAAS catalyst was conveniently recovered from the reaction mixture and reused for four consecutive cycles without catastrophic loss in either mass or activity. Moreover, the antibacterial activities of the novel BIMs were studied on Gram-positive and Gram-negative bacterial strains, such as Enterococcus faecalis and Pseudomonas syringae.

17.
ACS Omega ; 9(37): 38648-38657, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39310151

RESUMEN

This work reports a high-yielding, organic solvent-free, gram-scale synthesis of novel Knoevenagel condensation products by reacting carbohydrate-derived 5-substituted-2-furaldehydes (SFLs) with active methylene compounds (AMCs) using various organic amines and inorganic bases as catalysts. Among the base catalysts examined, piperidine performed best, affording satisfactory selectivity and yield of the targeted Knoevenagel condensation products owing to the subtle balance between its nucleophilicity and basicity. The reaction was optimized on various reaction parameters, such as temperature, duration, solvent, catalyst loading, and molar ratio of the reactants. Even though the SFLs exhibited significantly different reactivity, a general synthetic protocol was developed successfully, affording good to excellent isolated yields (70-96%) of the novel Knoevenagel condensation products at ambient temperature. Moreover, the Knoevenagel products were purified by triturating with eco-friendly solvents (e.g., ethyl acetate and n-heptane) without chromatographic purification.

18.
RSC Adv ; 14(5): 3096-3103, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239440

RESUMEN

Fuel candidates containing both petroleum-derived and biomass-derived molecules in their structural motifs ensure both feedstocks are used optimally and coherently. This work reports a straightforward and efficient preparation of 5-(arylmethyl)furfurals (AMFFs), 2-(arylmethyl)furans (AMFs), and 2-(arylmethyl)-5-methylfurans (AMMFs) as hybrid biofuels (or fuel oxygenates) starting from carbohydrate-derived 5-(acetoxymethyl)furfural (AcMF) and petroleum-derived aromatic hydrocarbons. The AMFFs were prepared by Friedel-Crafts reaction between AcMF and aromatic hydrocarbons (e.g., BTX, mesitylene) by employing anhydrous ZnCl2 as the catalyst. AMFs were prepared by decarbonylation of AMFFs over the Pd(OAc)2 catalyst under solvent-free conditions. In contrast, AMMFs were produced by hydrogenating AMFFs in methanol using gaseous hydrogen and the 10% Pd/C catalyst. The catalytic transformations were optimized on various parameters, and all the biofuel candidates were obtained in good to excellent isolated yields (>80%) under moderate conditions.

19.
Nanoscale ; 16(15): 7467-7479, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38511345

RESUMEN

A high-temperature pyrolysis-controlled coordination reconstruction resulted in a single-Ni-atom structure with a Ni-Nx-C structural unit (x = N atom coordinated to Ni). Pyrolysis of Ni-phen@ZIF-8-RF at 700 °C resulted in NiNP-NC-700 with predominantly Ni nanoparticles. Upon elevating the pyrolysis temperature from 700 to 900 °C, a coordination reconstruction offers Ni-Nx atomic sites in NiSA-NC-900. A combined investigation with X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and soft X-ray L3-edge spectroscopy suggests the stabilization of low-valent Niδ+ (0 < δ < 2) in the Ni-N-C structural units. The oxygen evolution reaction (OER) is a key process during water splitting in fuel cells. However, OER is a thermodynamically uphill reaction with multi-step proton-coupled electron transfer and sluggish kinetics, due to which there is a need for a catalyst that can lower the OER overpotentials. The adsorption energy of a multi-step reaction on a single metal atom with coordination unsaturation tunes the adsorption of each oxygenated intermediate. The promising OER activity of the NiSA-NC-900/NF anode on nickel foam was followed by the overall water splitting (OWS) using using NiSA-NC-900/NF as anode and Pt coil as the cathodic counterpart, wherein a cell potential of 1.75 V at 10 mA cm-2 was achieved. The cell potential recorded with Pt(-)/(+)NiSA-NC-900/NF was much lower than that obtained for other cells, i.e., Pt(-)/NF and NF(-)/(+)NF, which enhances the potentials of low-valent NiSAs for insightful understanding of the OER. At a constant applied potential of 1.61 V (vs. RHE) for 12 h, an small increase in current for initial 0.6 h followed by a constant current depicts the fair stability of catalyst for 12 h. Our results offer an insightful angle into the OER with a coordinatively reconstructed single-Ni-atom structure at lower valency (<+2).

20.
RSC Adv ; 13(22): 15141-15147, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37207095

RESUMEN

This work reports a high-yielding synthesis of γ-butyrolactone (GBL), a promising biofuel, renewable solvent, and sustainable chemical feedstock, by the catalytic hydrogenation of 2-furanone. 2-Furanone can be synthesized renewably by the catalytic oxidation of xylose-derived furfural (FUR). Humin, produced during the preparation of FUR from xylose, was carbonized to form humin-derived activated carbon (HAC). Palladium supported on humin-derived activated carbon (Pd/HAC) was used as an efficient and recyclable catalyst for hydrogenating 2-furanone into GBL. The process was optimized in various reaction parameters, such as temperature, catalyst loading, hydrogen pressure, and solvent. Under optimized conditions (RT, 0.5 MPa H2, THF, 3 h), the 4% Pd/HAC (5 wt% loading) catalyst afforded GBL in an 89% isolated yield. Under identical conditions, an 85% isolated yield of γ-valerolactone (GVL) was obtained starting from biomass-derived angelica lactone. Moreover, the Pd/HAC catalyst was conveniently recovered from the reaction mixture and successfully recycled for five consecutive cycles with only a marginal decrease in the yield of GBL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA