Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell Proteomics ; 23(7): 100795, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848995

RESUMEN

At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Epigénesis Genética , Chaperonas de Histonas , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Mutación , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/genética
2.
Plant J ; 118(6): 1922-1936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493352

RESUMEN

Deficiency in chromatin assembly factor-1 (CAF-1) in plants through dysfunction of its components, FASCIATA1 and 2 (FAS1, FAS2), leads to the specific and progressive loss of rDNA and telomere repeats in plants. This loss is attributed to defective repair mechanisms for the increased DNA breaks encountered during replication, a consequence of impaired replication-dependent chromatin assembly. In this study, we explore the role of KU70 in these processes. Our findings reveal that, although the rDNA copy number is reduced in ku70 mutants when compared with wild-type plants, it is not markedly affected by diverse KU70 status in fas1 mutants. This is consistent with our previous characterisation of rDNA loss in fas mutants as a consequence part of the single-strand annealing pathway of homology-dependent repair. In stark contrast to rDNA, KU70 dysfunction fully suppresses the loss of telomeres in fas1 plants and converts telomeres to their elongated and heterogeneous state typical for ku70 plants. We conclude that the alternative telomere lengthening pathway, known to be activated in the absence of KU70, overrides progressive telomere loss due to CAF-1 dysfunction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factor 1 de Ensamblaje de la Cromatina , Proteínas de Unión al ADN , Homeostasis del Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factor 1 de Ensamblaje de la Cromatina/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Mutación , Telómero/metabolismo , Telómero/genética , Cromosomas de las Plantas/metabolismo
3.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34350964

RESUMEN

Analysis of histone variants and epigenetic marks is dominated by genome-wide approaches in the form of chromatin immunoprecipitation-sequencing (ChIP-seq) and related methods. Although uncontested in their value for single-copy genes, mapping the chromatin of DNA repeats is problematic for biochemical techniques that involve averaging of cell populations or analysis of clusters of tandem repeats in a single-cell analysis. Extending chromatin and DNA fibers allows us to study the epigenetics of individual repeats in their specific chromosomal context, and thus constitutes an important tool for gaining a complete understanding of the epigenetic organization of genomes. We report that using an optimized fiber extension protocol is essential in order to obtain more reproducible data and to minimize the clustering of fibers. We also demonstrate that the use of super-resolution microscopy is important for reliable evaluation of the distribution of histone modifications on individual fibers. Furthermore, we introduce a custom script for the analysis of methylation levels on DNA fibers and apply it to map the methylation of telomeres, ribosomal genes and centromeres.


Asunto(s)
Metilación de ADN , Microscopía , Cromatina/genética , Inmunoprecipitación de Cromatina , ADN/genética , Metilación de ADN/genética
4.
Genome Res ; 30(11): 1583-1592, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33033057

RESUMEN

Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant-pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.


Asunto(s)
Arabidopsis/genética , Resistencia a la Enfermedad/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , Expresión Génica , Genes de Plantas , Genoma de Planta , Inestabilidad Genómica
5.
Plant J ; 105(6): 1534-1548, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314374

RESUMEN

Arabidopsis thaliana 45S ribosomal genes (rDNA) are located in tandem arrays called nucleolus organizing regions on the termini of chromosomes 2 and 4 (NOR2 and NOR4) and encode rRNA, a crucial structural element of the ribosome. The current model of rDNA organization suggests that inactive rRNA genes accumulate in the condensed chromocenters in the nucleus and at the nucleolar periphery, while the nucleolus delineates active genes. We challenge the perspective that all intranucleolar rDNA is active by showing that a subset of nucleolar rDNA assembles into condensed foci marked by H3.1 and H3.3 histones that also contain the repressive H3K9me2 histone mark. By using plant lines containing a low number of rDNA copies, we further found that the condensed foci relate to the folding of rDNA, which appears to be a common mechanism of rDNA regulation inside the nucleolus. The H3K9me2 histone mark found in condensed foci represents a typical modification of bulk inactive rDNA, as we show by genome-wide approaches, similar to the H2A.W histone variant. The euchromatin histone marks H3K27me3 and H3K4me3, in contrast, do not colocalize with nucleolar foci and their overall levels in the nucleolus are very low. We further demonstrate that the rDNA promoter is an important regulatory region of the rDNA, where the distribution of histone variants and histone modifications are modulated in response to rDNA activity.


Asunto(s)
ADN de Plantas/genética , ADN Ribosómico/genética , Epigénesis Genética/genética , Arabidopsis/genética , Nucléolo Celular/genética , Núcleo Celular/genética , ADN de Plantas/metabolismo , ADN Ribosómico/metabolismo , Marcadores Genéticos/genética , Variación Genética , Histonas/genética , Histonas/metabolismo , Raíces de Plantas/metabolismo , Transcripción Genética
6.
Plant J ; 106(1): 56-73, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368779

RESUMEN

Histone chaperones mediate the assembly and disassembly of nucleosomes and participate in essentially all DNA-dependent cellular processes. In Arabidopsis thaliana, loss-of-function of FAS1 or FAS2 subunits of the H3-H4 histone chaperone complex CHROMATIN ASSEMBLY FACTOR 1 (CAF-1) has a dramatic effect on plant morphology, growth and overall fitness. CAF-1 dysfunction can lead to altered chromatin compaction, systematic loss of repetitive elements or increased DNA damage, clearly demonstrating its severity. How chromatin composition is maintained without functional CAF-1 remains elusive. Here we show that disruption of the H2A-H2B histone chaperone NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) suppresses the FAS1 loss-of-function phenotype. The quadruple mutant fas1 nap1;1 nap1;2 nap1;3 shows wild-type growth, decreased sensitivity to genotoxic stress and suppression of telomere and 45S rDNA loss. Chromatin of fas1 nap1;1 nap1;2 nap1;3 plants is less accessible to micrococcal nuclease and the nuclear H3.1 and H3.3 histone pools change compared to fas1. Consistently, association between NAP1 and H3 occurs in the cytoplasm and nucleus in vivo in protoplasts. Altogether we show that NAP1 proteins play an essential role in DNA repair in fas1, which is coupled to nucleosome assembly through modulation of H3 levels in the nucleus.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Mutación/genética
7.
New Phytol ; 234(5): 1891-1900, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278223

RESUMEN

Plant protoplasts are generated by treatment with digestion enzymes, producing plant cells devoid of the cell wall and competent for efficient polyethylene glycol mediated transformation. This way fluorescently tagged proteins can be introduced to the protoplasts creating an excellent system to probe the localization and function of uncharacterized plant proteins in vivo. We implement the method of laser microirradiation to generate DNA lesions in Arabidopsis thaliana, which enables monitoring the recruitment and dynamics of the DNA repair factors as well as bimolecular fluorescence complementation assay to test transient, conditional interactions of proteins directly at sites of DNA damage. We demonstrate that laser microirradiation in protoplasts yields a physiological cellular response to DNA lesions, based on proliferating cell nuclear antigen (PCNA) redistribution in the nucleus and show that factors involved in DNA repair, such as MRE11 or PCNA are recruited to induced DNA lesions. This technique is relatively easy to adopt by other laboratories and extends the current toolkit of methods aimed to understand the details of DNA damage response in plants. The presented method is fast, flexible and facilitates work with different mutant backgrounds or even different species, extending the utility of the system.


Asunto(s)
Arabidopsis , Reparación del ADN , Arabidopsis/genética , Arabidopsis/metabolismo , ADN , Daño del ADN , Rayos Láser , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas
8.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618100

RESUMEN

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Replicación del ADN , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myb/genética , Transducción de Señal , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Genoma de Planta , Inestabilidad Genómica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Nucleic Acids Res ; 47(18): 9842-9856, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31392988

RESUMEN

To elucidate the molecular nature of evolutionary changes of telomeres in the plant order Asparagales, we aimed to characterize telomerase RNA subunits (TRs) in these plants. The unusually long telomere repeat unit in Allium plants (12 nt) allowed us to identify TRs in transcriptomic data of representative species of the Allium genus. Orthologous TRs were then identified in Asparagales plants harbouring telomere DNA composed of TTAGGG (human type) or TTTAGGG (Arabidopsis-type) repeats. Further, we identified TRs across the land plant phylogeny, including common model plants, crop plants, and plants with unusual telomeres. Several lines of functional testing demonstrate the templating telomerase function of the identified TRs and disprove a functionality of the only previously reported plant telomerase RNA in Arabidopsis thaliana. Importantly, our results change the existing paradigm in plant telomere biology which has been based on the existence of a relatively conserved telomerase reverse transcriptase subunit (TERT) associating with highly divergent TRs even between closely related plant taxa. The finding of a monophyletic origin of genuine TRs across land plants opens the possibility to identify TRs directly in transcriptomic or genomic data and/or predict telomere sequences synthesized according to the respective TR template region.


Asunto(s)
Evolución Molecular , Filogenia , ARN/genética , Telomerasa/genética , Telómero/genética , Allium/genética , Arabidopsis/genética , Asparagales/genética , Embryophyta/genética , Genoma de Planta/genética , Humanos
10.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008793

RESUMEN

Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.


Asunto(s)
Arabidopsis/metabolismo , Telomerasa/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Replicación del ADN , Regulación de la Expresión Génica de las Plantas , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Péptidos/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Procesamiento Postranscripcional del ARN/genética , Ribosomas/metabolismo , Homeostasis del Telómero , Proteínas de Unión a Telómeros/metabolismo , Transcripción Genética
12.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28483825

RESUMEN

Ribosomal RNA genes (rDNA) have been used as valuable experimental systems in numerous studies. Here, we focus on elucidating the spatiotemporal organisation of rDNA replication in Arabidopsis thaliana To determine the subnuclear distribution of rDNA and the progression of its replication during the S phase, we apply 5-ethynyl-2'-deoxyuridine (EdU) labelling, fluorescence-activated cell sorting, fluorescence in situ hybridization and structured illumination microscopy. We show that rDNA is replicated inside and outside the nucleolus, where active transcription occurs at the same time. Nascent rDNA shows a maximum of nucleolar associations during early S phase. In addition to EdU patterns typical for early or late S phase, we describe two intermediate EdU profiles characteristic for mid S phase. Moreover, the use of lines containing mutations in the chromatin assembly factor-1 gene fas1 and wild-type progeny of fas1xfas2 crosses depleted of inactive copies allows for selective observation of the replication pattern of active rDNA. High-resolution data are presented, revealing the culmination of replication in the mid S phase in the nucleolus and its vicinity. Taken together, our results provide a detailed snapshot of replication of active and inactive rDNA during S phase progression.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Nucléolo Celular/metabolismo , Replicación del ADN/genética , ADN Ribosómico/genética , Fase S/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Raíces de Plantas/metabolismo , Transcripción Genética
13.
J Exp Bot ; 71(17): 5160-5178, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32556244

RESUMEN

Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.


Asunto(s)
Núcleo Celular , Cromatina , Nucléolo Celular , Regulación de la Expresión Génica , Plantas/genética
14.
Klin Mikrobiol Infekc Lek ; 24(3): 68-72, 2018 09.
Artículo en Checo | MEDLINE | ID: mdl-30747987

RESUMEN

OBJECTIVES: Staphylococcus epidermidis and coagulase-negative staphylococci generally are important causative agents of hospital-acquired infections. A significant role in this process is played by their common ability to form biofilm, a highly organized community of microorganisms adhering to inert surfaces. The study aimed to determine the prevalence of these bacterial strains and their ability to form biofilm at the Department of Hemato-Oncology, University Hospital Olomouc. MATERIAL AND METHODS: Over a period of 12 months, samples of air and swabs from surfaces and staff members were collected. The samples were subjected to standard microbiology tests; coagulase-negative staphylococci were identified. Staphylococcus epidermidis strains were confirmed by polymerase chain reaction and subsequently tested for biofilm formation. RESULTS AND CONCLUSIONS: Coagulase-negative staphylococci were found in 81 samples, most commonly swabs from staff members. S. epidermidis accounted for 60 % of all positive results; it was most frequently isolated from surface swabs. Almost half of S. epidermidis strains were able to form biofilm. These strains were found in the environment characterized by cleanliness classes FED-STD-209E (USA) - 10 000 and FED-STD-209E (USA) - 100 000. Thus, they pose a risk for immunocompromised patients staying there. Since coagulase-negative staphylococci were also found in healthcare staff of the department, the staff members may play a key role in the transmission of these microorganisms to patients.


Asunto(s)
Biopelículas , Infecciones Estafilocócicas , Staphylococcus epidermidis , Coagulasa/metabolismo , Humanos , Prevalencia , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/fisiología
15.
Plant J ; 88(3): 411-424, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27377564

RESUMEN

Arabidopsis thaliana mutants dysfunctional in the evolutionarily conserved protein complex chromatin assembly factor-1 (CAF-1), which deposits the canonical histone H3 variant H3.1 during DNA synthesis-dependent chromatin assembly, display complex phenotypic changes including meristem and growth alterations, sensitivity to DNA-damaging agents, and reduced fertility. We reported previously that mutants in the FAS1 subunit of CAF-1 progressively lose telomere and 45S rDNA repeats. Here we show that multiple aspects of the fas phenotype are recovered immediately on expression of a reintroduced FAS1 allele, and are clearly independent of the recovery of rDNA copy-numbers and telomeres. In reverted lines, 45S rDNA genes are recovered to diverse levels with a strikingly different representation of their variants, and the typical association of nucleolar organizing region 4 with the nucleolus is perturbed. One of 45S rDNA variants (VAR1), which is silenced in wild-type (WT) plants without mutation history (Col-0 WT), dominates the expression pattern, whereas VAR2 is dominant in Col-0 WT plants. We propose an explanation for the variability of telomere and 45S rDNA repeats associated with CAF-1 function, suggesting that the differences in nuclear partitioning and expression of the rDNA variants in fas mutants and their revertants provide a useful experimental system to study genetic and epigenetic factors in gene dosage compensation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Cromatina/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Genoma de Planta/genética , Telómero/genética , Telómero/metabolismo
16.
Plant J ; 85(3): 337-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26716914

RESUMEN

Phylogenetic divergence in Asparagales plants is associated with switches in telomere sequences. The last switch occurred with divergence of the genus Allium (Amaryllidaceae) from the other Allioideae (formerly Alliaceae) genera, resulting in uncharacterized telomeres maintained by an unknown mechanism. To characterize the unknown Allium telomeres, we applied a combination of bioinformatic processing of transcriptomic and genomic data with standard approaches in telomere biology such as BAL31 sensitivity tests, terminal restriction fragment analysis, the telomere repeat amplification protocol (TRAP), and fluorescence in situ hybridization (FISH). Using these methods, we characterize the unusual telomeric sequence (CTCGGTTATGGG)n present in Allium species, demonstrate its synthesis by telomerase, and characterize the telomerase reverse transcriptase (TERT) subunit of Allium cepa. Our findings open up the possibility of studying the molecular details of the evolutionary genetic change in Allium telomeres and its possible role in speciation. Experimental studies addressing the implications of this change in terms of the interplay of telomere components may now be designed to shed more light on telomere functions and evolution in general.


Asunto(s)
Allium/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Telomerasa/metabolismo , Telómero/genética , Allium/enzimología , Secuencia de Bases , Biología Computacional , Genómica , Hibridación Fluorescente in Situ , Filogenia , Análisis de Secuencia de ADN , Telomerasa/genética , Transcriptoma
17.
Plant J ; 83(1): 18-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25752316

RESUMEN

Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.


Asunto(s)
Cromatina/química , ADN Ribosómico/metabolismo , Plantas/genética , Telómero/metabolismo , Cromatina/metabolismo , Replicación del ADN , ADN de Plantas/química , ADN de Plantas/metabolismo , ADN Ribosómico/química , Epigénesis Genética , Inestabilidad Genómica , Histonas/genética , Histonas/metabolismo , Telómero/genética
18.
Plant J ; 81(2): 198-209, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359579

RESUMEN

Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , ADN Ribosómico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología
19.
Plant J ; 82(4): 644-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25828846

RESUMEN

The characterization of unusual telomere sequence sheds light on patterns of telomere evolution, maintenance and function. Plant species from the closely related genera Cestrum, Vestia and Sessea (family Solanaceae) lack known plant telomeric sequences. Here we characterize the telomere of Cestrum elegans, work that was a challenge because of its large genome size and few chromosomes (1C 9.76 pg; n = 8). We developed an approach that combines BAL31 digestion, which digests DNA from the ends and chromosome breaks, with next-generation sequencing (NGS), to generate data analysed in RepeatExplorer, designed for de novo repeats identification and quantification. We identify an unique repeat motif (TTTTTTAGGG)n in C. elegans, occurring in ca. 30 400 copies per haploid genome, averaging ca. 1900 copies per telomere, and synthesized by telomerase. We demonstrate that the motif is synthesized by telomerase. The occurrence of an unusual eukaryote (TTTTTTAGGG)n telomeric motif in C. elegans represents a switch in motif from the 'typical' angiosperm telomere (TTTAGGG)n . That switch may have happened with the divergence of Cestrum, Sessea and Vestia. The shift in motif when it arose would have had profound effects on telomere activity. Thus our finding provides a unique handle to study how telomerase and telomeres responded to genetic change, studies that will shed more light on telomere function.


Asunto(s)
Cestrum/genética , Cromosomas de las Plantas/genética , Telómero/química , Telómero/genética
20.
Plant Mol Biol ; 92(4-5): 457-471, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27531496

RESUMEN

Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.


Asunto(s)
Arabidopsis/genética , ADN Espaciador Ribosómico/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Variación Genética/genética , Mutación , ARN Ribosómico/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA