Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Res ; 255: 119136, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740295

RESUMEN

Even though researches have shown that biochar can improve soil-health and plant-growth even in harsh environments and get rid of harmful heavy metals and new contaminants, it is still not sustainable, affordable, or effective enough. Therefore, scientists are required to develop nanomaterials in order to preserve numerous aquatic and terrestrial species. The carbonaceous chemical known as nano-biochar (N-BC) can be used to get rid of metal contamination and emerging contaminants. However, techniques to reduce hetero-aggregation and agglomeration of nano-biochar are needed that lead to the emergence of emerging nano-biochar (EN-BC) in order to maximise its capacity for adsorption of nano-biochar. To address concerns in regards to the expanding human population and sustain a healthy community, it is imperative to address the problems associated with toxic heavy metals, emerging contaminants, and other abiotic stressors that are threatening agricultural development. Nano-biochar can provide an effective solution for removal of emerging contaminants, toxic heavy metals, and non-degradable substance. This review provides the detailed functional mechanistic and kinetics of nano-biochar, its effectiveness in promoting plant growth, and soil health under abiotic stress. Nonetheless, this review paper has comprehensively illustrated various adsorption study models that will be employed in future research.


Asunto(s)
Carbón Orgánico , Metales Pesados , Desarrollo de la Planta , Contaminantes del Suelo , Metales Pesados/análisis , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Adsorción , Desarrollo de la Planta/efectos de los fármacos , Cinética , Restauración y Remediación Ambiental/métodos
2.
Environ Geochem Health ; 46(2): 41, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227068

RESUMEN

Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).


Asunto(s)
Carbón Orgánico , Sequías , Edición Génica , Agricultura , Productos Agrícolas
3.
Environ Res ; 222: 115335, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693464

RESUMEN

Chemical co-precipitation synthesized novel and green cobalt-oxide nanoparticles (Co3O4-NPs) utilizing cobalt nitrate as cobalt precursors. FTIR, Raman, scanning electron microscopy, UV visible, X-ray powder diffraction, and BET was used to analyze the surface characteristics, composition, and morphology, of the NPs. These green Co3O4-NPs were employed to remove Pb ions from simulated wastewater solutions at various pH, adsorbate, temperature, and dose concentrations. At dose 20 mg/L, pH 6.0, 20 mg/L (Pb(II) solution, 25 °C of temperature, and 45 min for equilibrium, nearly 99.44% of Pb ions were removed. To evaluate the kinetic data, four different kinetic equations were used. The data fit the Elovich rate equation better than the other three models. Thermodynamic and isothermal studies were also evaluated, and the maximum adsorption capacity of 450.45 mg/g was observed at 298.15 K. 0.1 M HNO3, and 0.1 HCl were used to regenerate used Co3O4-NPs. Simulation results show the strong correlation of the Co atom in the Co3O4-NPs generates active delocalized surface states, which are energetically most favorable for heavy metal (Pb ions) adsorption and removal, supporting the experimental outcomes. In concluding remarks, green Co3O4-NPs can also be used as an adsorbent to remove Pb ions from wastewater bodies.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Plomo , Aguas Residuales , Adsorción , Cobalto , Nanopartículas/química , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
4.
Environ Geochem Health ; 45(12): 9321-9344, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36413266

RESUMEN

The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.


Asunto(s)
Metales Pesados , Suelo , Microbiología del Suelo , Desarrollo de la Planta , Productos Agrícolas
5.
Mol Biol Rep ; 49(12): 11587-11600, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36104588

RESUMEN

Several phytopathogens have detrimental effects on crop production and productivity potentially threatening global food security. Studying the genetic mechanisms of virulence in phytopathogens is vital to assist in their management. Genome editing tools are paving their fascinating roles from the first-generation site-specific nucleases ZNF and TALEN to the current generation clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein9. The discovery of CRISPR/Cas9 has revolutionised the understanding of resistance as well as the susceptibility mechanism against phytopathogens in crop plants. This emerging tool allows researchers to perform precise genome manipulation, genetic screening, regulation, and correction to develop resistance in crop plants with fewer off-target effects. It provides a new opportunity for disease improvement and strengthens the resistant breeding programme. CRISPR/Cas9-based targeted gene manipulation and its enormous application potential as well as the challenges for developing transgene-free disease-resistant crop plants have been discussed in this review.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Productos Agrícolas/genética , Plantas Modificadas Genéticamente/genética , Genoma de Planta/genética
6.
Appl Microbiol Biotechnol ; 106(11): 3851-3877, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35596786

RESUMEN

Camptothecin (CPT) is a monoterpenoid-alkaloid, an anticancer compound from plant. Ever since its discovery in 1996 from the bark of Camptotheca acuminata, various researches have been conducted for enhancing its production. CPT has also been reported in several other species belonging to the plant families Icacinaceae, Rubiaceae, Apocynaceae, Nyssaceae, Betulaceae, Violaceae, Meliaceae, and Gelseminaceae. Out of these, Ophiorrhiza sp. (Rubiaceae) is the next possible candidate for sustainable CPT production after C. acuminata and Nothapodytes nimoonia. Various biotechnological-studies have been conducted on Ophiorrhiza sp. for searching the elite species and the most optimal strategies for CPT production. The genus Ophiorrhiza has been used as medicines for antiviral, antifungal, antimalarial, and anticancer activities. Phytochemical analysis has revealed the presence of alkaloids, flavonoids, triterpenes, and CPT from the plant. Because of the presence of CPT and its herbaceous habit, Ophiorrhiza sp. has now become a hot topic in research area. Currently, for mass production of the elite spp., tissue culture techniques have been implemented. In the past decades, several researchers have contributed on the diversity assessment, phytochemical analysis, mass production, and in vitro production of CPT in Ophiorrhiza sp. In this paper, we review the on the biotechnological strategies, optimal culture medium, micropropagation of Ophiorrhiza sp., effect of PGR on shoot formation, rhizogenesis, callus formation, and enhanced production of CPT for commercial use. KEY POINTS: • Latest literature on in vitro propagation of Ophiorrhiza sp. • Biotechnological production of camptothecin and related compounds • Optimization, elicitation, and transgenic studies in Ophiorrhiza sp.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Camptotheca , Magnoliopsida , Rubiaceae , Biotecnología , Camptotecina/análisis
7.
Appl Microbiol Biotechnol ; 106(3): 905-929, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35039927

RESUMEN

Polyamines (PAs) are ubiquitous low-molecular-weight, aliphatic compounds with wide as well as complex application in fundamental areas of plant growth and development. PAs are mediator of basic metabolism of organisms which include cell division and differentiation, biotic and abiotic stress tolerance, reversal of oxidative damage, stabilization of nucleic acids, and protein and phospholipid binding. In plants, it attributes in direct and indirect organogenesis, endogenous phytohormone regulation, cellular compartmentalization, fruit and flower development, senescence, and secondary metabolite production which are highly tuned as first line of defense response. There are several aspects of polyamine-directed mechanism that regulate overall plant growth in vitro and in vivo. In the present review, we have critically discussed the role played by polyamine on the enhanced production of bioactive natural products and how the same polyamines are functioning against different environmental stress conditions, i.e., salinity, drought, high CO2 content, herbivory, and physical wounding. The role of polyamines on elicitation process has been highlighted previously, but it is important to note that its activity as growth regulator under in vitro condition is correlated with an array of intertwined mechanism and physiological tuning. Medicinal plants under different developmental stages of micropropagation are characterized with different functional aspects and regulatory changes during embryogenesis and organogenesis. The effect of precursor molecules as well as additives and biosynthetic inhibitors of polyamines in rhizogenesis, callogenesis, tuberization, embryogenesis, callus formation, and metabolite production has been discussed thoroughly. The beneficial effect of exogenous application of PAs in elicitation of secondary metabolite production, plant growth and morphogenesis and overall stress tolerance are summarized in this present work. KEY POINTS: • Polyamines (PAs) play crucial roles in in vitro organogenesis. • PAs elicitate bioactive secondary metabolites (SMs). • Transgenic studies elucidate and optimize PA biosynthetic genes coding SMs.


Asunto(s)
Plantas Medicinales , Poliaminas , Biotecnología , Metabolómica , Desarrollo de la Planta
8.
Appl Microbiol Biotechnol ; 105(2): 569-585, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33404834

RESUMEN

Diosgenin is a plant-derived secondary metabolite mainly present in the members of the plant family Dioscoreaceae. It is a pharmaceutically important compound because of its anti-cancerous, anti-diabetic, anticoagulant, anti-thrombosis, anti-inflammatory, anti-viral, anti-ageing and other properties. Biotechnology provides an opportunity to genetically manipulate cells, tissues, organs or the whole organisms by propagating them in vitro in order to harvest the bioactive compounds. Diosgenin production from botanical sources is being improved by in vitro techniques which include elicitation, genetic transformations and bioconversions. Various techniques have been developed to obtain compounds for drug detection including separation from plants and other natural sources, molecular modelling, synthetic chemistry and combinatorial chemistry. Development in molecular markers determines genetic relationship, genetic linkage map construction, genetic diversity and identification. For rapid clonal propagation and ex situ conservation, the in vitro tools involving plant cell, tissue and organ culture have been well documented for plant-derived diosgenin production. The present review encompasses the wide application of the biotechnological techniques for diosgenin production via elucidating its biosynthetic pathway, in vitro production and mass propagation and elicitation. In addition, molecular marker-mediated diversity assessment of diosgenin containing plant species is also discussed. The review also presents the recent literature to explore the limitations of the relevant studies and future direction of research on production of diosgenin from Dioscorea spp. KEY POINTS: • Critical and updated assessment on sustainable production of diosgenin from Dioscorea spp. • In vitro propagation of Dioscorea spp. and elicitation of diosgenin production. • Diversity assessment of Dioscorea spp. using molecular markers.


Asunto(s)
Dioscorea , Diosgenina , Antiinflamatorios , Biotecnología , Células Cultivadas
9.
Appl Microbiol Biotechnol ; 105(11): 4427-4451, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34037841

RESUMEN

The genus Swertia (Family: Gentianaceae) has cosmopolitan distribution which is present in almost all the continents except South America and Australia. Swertia genus has been renowned as one of the potent herbal drugs in the British, American, and Chinese Pharmacopeias as well as well-documented in the Indian traditional medicinal systems, viz. Ayurveda, Siddha, and Unani. Many species of this genus have therapeutic properties and have been used traditionally in the treatment of a number of health ailments viz. hepatitis, diabetes, inflammation, bacillary dysentery, cancer, malaria, fever etc. This genus is industrially important medicinal plant that has been used as a principal component in numerous marketed herbal/ polyherbal formulations. Medicinal usage of Swertia is endorsed to the miscellaneous compounds viz. xanthones, irridoids, seco-irridoids, and triterpenoids. A chain of systematic isolation of bio-active compounds and their diverse range of pharmacological effects during last 15-20 years proved this genus as industrially important plant. Due to the various practices of the Swertia species, annual demand is more than 100 tons per year for this important herb which is continuously increasing 10% annually. The market value rises 10% by the year as there is increased demand in national and international market resulted in adulteration of many Swertia spp. due to paucity of agricultural practices, exomorphological, phytochemical, and molecular characterization. Thus, efficient biotechnology methods are prerequisite for the mass production of authentic species, sustainable production of bio-active compounds and ex situ conservation. A chain of systematic biotechnological interventions in Swertia herb during last 20 years cover the assessment of genetic diversity, in vitro sustainable production of bio-active compounds and mass propagation of elite genotypes via direct and indirect organogenesis. This review attempts to present the comprehensive assessment on biotechnological process made in Swertia over the past few years. KEY POINTS: • Critical and updated assessment on biotechnological aspects of Swertia spp. • In vitro propagation and genetic diversity assessment in Swertia spp. • Biosynthesis and sustainable production of secondary metabolites in Swertia spp.


Asunto(s)
Swertia , Australia , Biotecnología , Variación Genética , Extractos Vegetales , Swertia/genética
10.
Appl Microbiol Biotechnol ; 105(23): 8593-8614, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34708277

RESUMEN

Plant cell and tissue culture makes provision of a sustainable and nature-friendly strategy for the production of secondary metabolites, and modern progress in gene editing and genome engineering provides novel possibilities to improve both the qualitative and quantitative aspects of such phytochemicals. The ever-expanding quest for plant-based medicine to treat diabetes facilitates large-scale cultivation of Stevia rebaudiana to enhance the yield of its much-coveted low-calorie sweetener glycosides. The potential to process stevia as a "natural" product should enhance the acceptance of steviosides as a natural calorie-free sweetener especially suitable for use in diabetic and weight control drinks and foods. Besides sweetener agents, S. rebaudiana is a potent source of many antioxidant compounds and is used to cure immunodeficiencies, neurologic disorders, inflammation, diabetes mellitus, Parkinson's disease, and Alzheimer's disease. This comprehensive review presents the research outcomes of the many biotechnological interventions implicated to upscale the yield of steviol glycosides and its derivatives in in vitro cell, callus, tissue, and organ cultures with notes on the use of bioreactor and genetic engineering in relation to the production of these valuable compounds in S. rebaudiana. KEY POINTS: • Critical and updated assessment on sustainable production of steviol glycosides from Stevia rebaudiana. • In vitro propagation of S. rebaudiana and elicitation of steviol glycosides production. • Genetic fidelity and diversity assessment of S. rebaudiana using molecular markers.


Asunto(s)
Diabetes Mellitus , Diterpenos de Tipo Kaurano , Stevia , Antioxidantes , Glicósidos , Hojas de la Planta , Stevia/genética , Edulcorantes
11.
Physiol Mol Biol Plants ; 25(2): 313-326, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30956416

RESUMEN

Chitosan is a natural biopolymer modified from chitins which act as a potential biostimulant and elicitor in agriculture. It is non-toxic, biodegradable and biocompatible which favors potentially broad application. It enhances the physiological response and mitigates the adverse effect of abiotic stresses through stress transduction pathway via secondary messenger(s). Chitosan treatment stimulates photosynthetic rate, stomatal closure through ABA synthesis; enhances antioxidant enzymes via nitric oxide and hydrogen peroxide signaling pathways, and induces production of organic acids, sugars, amino acids and other metabolites which are required for the osmotic adjustment, stress signaling, and energy metabolism under stresses. It is also known to form complexes with heavy metals and used as tool for phytoremediation and bioremediation of soil. Besides, this is used as antitranspirant compound through foliar application in many plants thus reducing water use and ensures protection from other negative effects. Based on such beneficial properties, chitosan is utilized in sustainable agricultural practices owing to changing climates. Our review gathers the recent information on chitosan centered upon the abiotic stress responses which could be useful in future crop improvement programs.

12.
Phytother Res ; 30(2): 341-4, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26549619

RESUMEN

Gymnemic acid is a mixture of triterpenoid saponins of oleanane class, isolated from Gymnema sylvestre Wild R.Br (family: Asclepidaceae), an herbal plant used in traditional medicine to treat diabetes. Effect of gymnemic acid (0.1-20 µg/mL) on in vitro mitogen (concanavalin A and lipopolysaccharide)-induced splenic lymphocyte proliferation was studied using rat as model. Significant (p < 0.05) stimulation of lymphoproliferation was observed in cultures treated with 10 and 20 µg/mL concentration of gymnemic acid in the absence or presence of mitogens. The present study suggests that gymnemic acid has immunomodulatory property, stimulating lymphoid components of immune system, and the traditional knowledge of anti-diabetic property of G. sylvestre is scientifically supplemented with its immunomodulatory properties.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Gymnema sylvestre/química , Linfocitos/efectos de los fármacos , Saponinas/farmacología , Triterpenos/farmacología , Animales , Linfocitos/citología , Masculino , Ratas , Ratas Wistar , Bazo/citología
13.
Plant Physiol Biochem ; 214: 108846, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38945095

RESUMEN

Eco-friendly and sustainable practices must be followed while using the right plants and microbes to remove harmful heavy metals from the soil. The goal of the current study was to ascertain how effectively sorghum plants removed cadmium (Cd) from the soil using polyamines and mycorrhiza. Plant-biochemicals such as free amino acids, ascorbic acids, anthocyanin, proline, and catalase, APX, peroxidase activities were considered as markers in this study which revealed the adverse plant growth performance under 70 and 150 ppm of Cd concentration (w/w) after 30,60, and 90 days of treatment. The plants showed a mitigating effect against high Cd-concentration with exogenous use of mycorrhiza and putrescine. The treatment T17 (mycorrhiza +5 mM putrescine) showed a substantial decrease in the content of total free amino acid, ascorbic acid, catalase, APX, peroxidase by 228.36%, 39.79%, 59.06%, 182.79% 106.97%, respectively after 90 days as compared to T12 (150 ppm Cd). Anthocyanin content was negatively correlated (-0.503, -0.556, and -0.613) at p < 0.01 with other studied markers, with an increase by 10.52% in T17 treated plant as compared to T12. The concentration of Cd in root increased by 49.6% (141 ppm) and decreased in the shoot by 71% (17.8 ppm) in T17 treated plant as compared to T12 after 90 days. The application of mycorrhiza and putrescine significantly increased BCF (>1) and decreased TF (<1) for Cd translocation. The administration of mycorrhiza and putrescine boosted the Cd removal efficiency of sorghum plants, according to FTIR, XRD, and DSC analysis. As a result, this study demonstrates novel approaches for induced phytoremediation activity of plants via mycorrhiza and putrescine augmentation, which can be a promising option for efficient bioremediation in contaminated sites.

14.
Chemosphere ; 313: 137551, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36521746

RESUMEN

In this investigation, marigold flower-waste was activated with iron salts (MG-Fe), subsequently marigold plant extract (MG-Fe-Ex) for the adsorptive elimination of As3+ and As5+ from contaminated water. The governing factor such as medium pH, temperature, pollutant concentration, reaction time, adsorbent dose were considered for the study. The complete elimination of As3+/5+ was recorded with MG-Fe-Ex at pH 8.0, 90 min, 30 °C, dose 4 g/L, 20 mg/L of As3+/5+ and shaking rate 120 rpm, while under the identical experimental condition, MG-Fe exhibited 98.4% and 73.3% removal for As5+ and As3+, respectively. The MG-Fe-Ex contains iron oxides (Fe2O3 and Fe3O4) as a result of iron ions reaction with plant bioactive molecules as evident from x-ray diffraction analysis (XRD), energy dispersive x-ray spectroscopic (EDS) and Fourier transform infrared (FTIR) spectroscopic study. The adsorption data of As3+/5+ on MG-Fe and MG-Fe-Ex was best fitted by pseudo-first order kinetic and freundlich isotherm except As5+ adsorption on MG-Fe-Ex that can be described by langmuir isotherm model. The prevailing mechanism in adsorption of As3+/5+ on both adsorbent might be hydrogen bonding, electrostatic attraction and complexation. From the above, it is confirmed that MG-Fe-Ex adsorbent has high potential and can be used for the adsorptive elimination of As3+/5+ from contaminated water in sustainable and environmentally friendly way.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Purificación del Agua , Hierro/química , Arsénico/análisis , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Adsorción , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
15.
Front Microbiol ; 13: 898979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898908

RESUMEN

Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.

16.
Biotechnol Genet Eng Rev ; : 1-37, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36254096

RESUMEN

Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.

17.
Front Microbiol ; 13: 916488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910633

RESUMEN

The breaking silence between the plant roots and microorganisms in the rhizosphere affects plant growth and physiology by impacting biochemical, molecular, nutritional, and edaphic factors. The components of the root exudates are associated with the microbial population, notably, plant growth-promoting rhizobacteria (PGPR). The information accessible to date demonstrates that PGPR is specific to the plant's roots. However, inadequate information is accessible for developing bio-inoculation/bio-fertilizers for the crop in concern, with satisfactory results at the field level. There is a need to explore the perfect candidate PGPR to meet the need for plant growth and yield. The functions of PGPR and their chemotaxis mobility toward the plant root are triggered by the cluster of genes induced by the components of root exudates. Some reports have indicated the benefit of root exudates in plant growth and productivity, yet a methodical examination of rhizosecretion and its consequences in phytoremediation have not been made. In the light of the afore-mentioned facts, in the present review, the mechanistic insight and recent updates on the specific PGPR recruitment to improve crop production at the field level are methodically addressed.

18.
Front Microbiol ; 13: 924407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187978

RESUMEN

Excessive dependence on chemical fertilizers and ignorance to organic and microbial inputs under intensive cropping systems are the basic components of contemporary agriculture, which evolves several sustainability issues, such as degraded soil health and sub-optimal crop productivity. This scenario urges for integrated nutrient management approaches, such as microbes-mediated integrated plant nutrition for curtailing the high doses as chemical fertilizers. Rationally, experiment has been conducted in pigeonpea at ICAR-IARI, New Delhi, with the aim of identifying the appropriate nutrient management technique involving microbial and organic nutrient sources for improved rhizo-modulation, crop productivity, and soil bio-fertility. The randomized block-designed experiment consisted nine treatments viz. Control, Recommended dose of fertilizers (RDF), RDF+ Microbial inoculants (MI), Vermicompost (VC), Farm Yard Manure (FYM), Leaf Compost (LC), VC + MI, FYM + MI, and LC + MI. Rhizobium spp., Pseudomonas spp., Bacillus spp., and Frateuria aurantia were used as seed-inoculating microbes. The results indicated the significant response of integration following the trend VC + MI > FYM + MI > LC + MI > RDF + MI for various plant shoot-root growth attributes and soil microbial and enzymatic properties. FYM + MI significantly improved the water-stable aggregates (22%), mean weight diameter (1.13 mm), and geometric mean diameter (0.93 mm), soil organic carbon (SOC), SOC stock, and SOC sequestration. The chemical properties viz. available N, P, and K were significantly improved with VC + MI. The study summarizes that FYM + MI could result in better soil physico-chemical and biological properties and shoot-root development; however; VC + MI could improve available nutrients in the soil and may enhance the growth of pigeonpea more effectively. The outcomes of the study are postulated as a viable and alternative solution for excessive chemical fertilizer-based nutrient management and would also promote the microbial consortia and organic manures-based agro-industries. This would add to the goal of sustainable agricultural development by producing quality crop produce, maintaining agro-biodiversity and making the soils fertile and healthy that would be a "gift to the society."

19.
PLoS One ; 16(7): e0253617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288904

RESUMEN

INTRODUCTION: Dioscorea deltoidea var. deltoidea (Dioscoreaceae) is a valuable endangered plant of great medicinal and economic importance due to the presence of the bioactive compound diosgenin. In the present study, response surface methodology (RSM) and artificial neural network (ANN) modelling have been implemented to evaluate the diosgenin content from D. deltoidea. In addition, different extraction parameters have been also optimized and developed. MATERIALS AND METHODS: Firstly, Plackett-Burman design (PBD) was applied for screening the significant variables among the selected extraction parameters i.e. solvent composition, solid: solvent ratio, particle size, time, temperature, pH and extraction cycles on diosgenin yield. Among seven tested parameters only four parameters (particle size, solid: solvent ratio, time and temperature) were found to exert significant effect on the diosgenin extraction. Moreover, Box-Behnken design (BBD) was employed to optimize the significant extraction parameters for maximum diosgenin yield. RESULTS: The most suitable condition for diosgenin extraction was found to be solid: solvent ratio (1:45), particle size (1.25 mm), time (45 min) and temperature (45°C). The maximum experimental yield of diosgenin (1.204% dry weight) was observed close to the predicted value (1.202% dry weight) on the basis of the chosen optimal extraction factors. The developed mathematical model fitted well with experimental data for diosgenin extraction. CONCLUSIONS: Experimental validation revealed that a well trained ANN model has superior performance compared to a RSM model.


Asunto(s)
Fraccionamiento Químico/métodos , Dioscorea/química , Diosgenina/aislamiento & purificación , Modelos Teóricos , Redes Neurales de la Computación , Tubérculos de la Planta/química , Calibración , Especies en Peligro de Extinción , Estructura Molecular , Tamaño de la Partícula , Plantas Medicinales/química , Solventes , Temperatura , Tiempo
20.
RSC Adv ; 9(68): 39793-39810, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-35541384

RESUMEN

Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3 - and 3 mM NH4 + nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4 +-fed tobacco plants compared to that fed NO3 - nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4 + nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3 - and NH4 + nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 µM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA