Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 319(1): H3-H12, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412778

RESUMEN

Heart failure (HF) is characterized by autonomic imbalance with sympathetic hyperactivity and loss of parasympathetic tone. Intracardiac ganglia (ICG) neurons represent the final common pathway for vagal innervation of the heart and strongly regulate cardiac functions. This study tests whether ICG cholinergic neuron activation mitigates the progression of cardiac dysfunction and reduces mortality that occurs in HF. HF was induced by transaortic constriction (TAC) in male transgenic Long-Evans rats expressing Cre recombinase within choline acetyltransferase (ChAT) neurons. ChAT neurons were selectively activated by expression and activation of excitatory designer receptors exclusively activated by designer receptors (DREADDs) by clozapine-N-oxide (TAC + treatment and sham-treated groups). Control animals expressed DREADDs but received saline (sham and TAC groups). A separate set of animals were telemetry instrumented to record blood pressure (BP) and heart rate (HR). Acute activation of ICG neurons resulted in robust reductions in BP (∼20 mmHg) and HR (∼100 beats/min). All groups of animals were subjected to weekly echocardiography and treadmill stress tests from 3 to 6 wk post-TAC/sham surgery. Activation of ICG cholinergic neurons reduced the left ventricular systolic dysfunction (reductions in ejection fraction, fractional shortening, stroke volume, and cardiac output) and cardiac autonomic dysfunction [reduced HR recovery (HRR) post peak effort] observed in TAC animals. Additionally, activation of ICG ChAT neurons reduced mortality by 30% compared with untreated TAC animals. These data suggest that ICG cholinergic neuron activation reduces cardiac dysfunction and improves survival in HF, indicating that ICG neuron activation could be a novel target for treating HF.NEW & NOTEWORTHY Intracardiac ganglia form the final common pathway for the parasympathetic innervation of the heart. This study has used a novel chemogenetic approach within transgenic ChAT-Cre rats [expressing only Cre-recombinase in choline acetyl transferase (ChAT) neurons] to selectively increase intracardiac cholinergic parasympathetic activity to the heart in a pressure overload-induced heart failure model. The findings from this study confirm that selective activation of intracardiac cholinergic neurons lessens cardiac dysfunction and mortality seen in heart failure, identifying a novel downstream cardiac-selective target for increasing cardioprotective parasympathetic activity in heart failure.


Asunto(s)
Neuronas Colinérgicas/fisiología , Insuficiencia Cardíaca/fisiopatología , Corazón/inervación , Función Ventricular , Animales , Sistema Nervioso Autónomo/fisiopatología , Presión Sanguínea , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Corazón/fisiopatología , Insuficiencia Cardíaca/etiología , Frecuencia Cardíaca , Masculino , Ratas , Ratas Long-Evans , Obstrucción del Flujo Ventricular Externo/complicaciones
2.
Exp Neurol ; 371: 114608, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949202

RESUMEN

Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Potenciación a Largo Plazo , Animales , Humanos , Progesterona/farmacología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Neuronas/metabolismo , Muerte Celular , Hipocampo/metabolismo , Modelos Animales de Enfermedad
3.
J Cereb Blood Flow Metab ; 40(10): 2026-2037, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31648593

RESUMEN

Cerebral edema and the subsequent increased intracranial pressure are associated with mortality and poor outcome following traumatic brain injury. Previous in vitro studies have shown that the Gibbs-Donnan effect, which describes the tendency of a porous, negatively charged matrix to attract positive ions and water, applies to brain tissue and that enzymatic reduction of the fixed charge density can prevent tissue swelling. We tested whether hyaluronidase, an enzyme that degrades the large, negatively charged glycosaminoglycan hyaluronan, could reduce brain edema after traumatic brain injury. In vivo, intracerebroventricular injection of hyaluronidase after controlled cortical impact in mice reduced edema in the ipsilateral hippocampus at 24 h by both the wet-weight/dry-weight method (78.15 ± 0.65% vs. 80.4 ± 0.46%; p < 0.01) and T2-weighted magnetic resonance imaging (13.88 ± 3.09% vs. 29.23 ± 6.14%; p < 0.01). Hyaluronidase did not adversely affect blood-brain-barrier-integrity measured by dynamic contrast-enhanced magnetic resonance imaging, nor did hyaluronidase negatively affect functional recovery after controlled cortical impact measured with the rotarod or Morris water maze tasks. Reduction of fixed charge density by hyaluronidase was confirmed in cortical explants in vitro (5.46 ± 1.15 µg/mg vs. 7.76 ± 1.87 µg/mg; p < 0.05). These data demonstrate that targeting the fixed charge density with hyaluronidase reduced edema in an in vivo mouse model of traumatic brain injury.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hialuronoglucosaminidasa/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/diagnóstico por imagen , Agua Corporal/metabolismo , Edema Encefálico/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hialuronoglucosaminidasa/administración & dosificación , Inyecciones Intraventriculares , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Desempeño Psicomotor/efectos de los fármacos , Recuperación de la Función
4.
JACC Basic Transl Sci ; 5(5): 484-497, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32478209

RESUMEN

This work shows long-term restoration of the hypothalamic oxytocin (OXT) network preserves OXT release, reduces mortality, cardiac inflammation, fibrosis, and improves autonomic tone and cardiac function in a model of heart failure. Intranasal administration of OXT in patients mimics the short-term changes seen in animals by increasing parasympathetic-and decreasing sympathetic-cardiac activity. This work provides the essential translational foundation to determine if approaches that mimic paraventricular nucleus (PVN) OXT neuron activation, such as safe, noninvasive, and well-tolerated intranasal administration of OXT, can be beneficial in patients with heart failure.

5.
Front Physiol ; 10: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745877

RESUMEN

The balance of sympathetic and parasympathetic tone provides exquisite control of heart rate and contractility and has also been shown to modulate coronary flow and inflammation. Understanding how autonomic balance is altered by cardiac disease is an active area of research, and developing new ways to control this balance provides insights into disease therapies. However, achieving acute neuron-specific stimulation of autonomic neurons can be difficult in experiments that measure the acute effects of nerve stimulation on the heart. Conventional electrical and pharmacological approaches can be spatially and temporally non-selective. Cell-specific expression of light-activated channels (channelrhodopsin, ChR2) is a powerful approach that enables control of the timing and distribution of cellular stimulation using light. We present such an optogenetic approach where parasympathetic cardiac neurons are selectively photoactivated at high temporal precision to initiate cholinergic-mediated slowing of heart rate. Mice were crossbred to express ChR2 in peripheral cholinergic neurons using Cre-Lox recombination driven by a choline acetyltransferase (ChAT) promoter. Hearts from adult mice were excised, perfused, and the epicardium was illuminated (peak 460-465 nm) to photoactivate ChR2. In one set of studies, hearts were illuminated using a large-field LED light source. In other studies, a micro LED was placed on the right atrium to selectively illuminate the junction of the superior vena cava (SVC) and right atrium. The ECG was acquired before, during, and after tissue illumination to measure changes in heart rate. Upon illumination, hearts exhibited sudden and dramatic reductions in heart rate with restoration of normal heart rate after cessation of illumination. Delays in atrioventricular conduction were also observed. Heart rate reductions at the highest irradiance levels were similar to heart rate reductions caused by application of bethanechol (10 µM) or acetylcholine (800 µM). Atropine (50 nM) completely blocked the effect of ChR2 photoactivation, confirming cholinergic mediation. Optogenetic activation of intrinsic parasympathetic neurons reduced heart rate in an immediate, dose-dependent fashion, resembling the slowing of sinus rate in response to acetylcholine. Our results demonstrate a new approach for controlling parasympathetic modulation of cardiac function by selectively activating the endogenous release of acetylcholine from intrinsic cardiac cholinergic neurons. Key Message: Optogenetic photoactivation of intrinsic cardiac neurons provides immediate, tissue-specific stimulation with minimal cross-reactivity. Our results demonstrate that selective expression of channelrhodopsin within cardiac cholinergic neurons enables photoactivated release of acetylcholine, thereby instantaneously slowing sinus rate and altering atrioventricular conduction. This provides for in-depth examination of the endogenous interplay between cardiac autonomic neurons and the functional outcomes of downstream post-synaptic receptor activation.

6.
Cardiovasc Res ; 113(11): 1318-1328, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472396

RESUMEN

AIMS: A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. METHODS AND RESULTS: Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate ß-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1ß expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. CONCLUSIONS: Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1ß, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were significantly higher in TAC + OXT compared with TAC animals. HR sensitivity, but not contractile sensitivity, to ß-adrenergic stimulation was improved in TAC + OXT hearts.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Animales , Corazón/fisiopatología , Insuficiencia Cardíaca/etiología , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/fisiopatología , Isoproterenol/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA