Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(19): e2200627, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35411712

RESUMEN

Layered Ni-rich lithium transition metal oxides are promising cathode materials for high-energy-density lithium-ion batteries. These cathodes, however, suffer from rapid performance decay under high-voltage operation. In this work, the electrochemical properties and structural evolution of the LiNi0.8 Mn0.1 Co0.1 O2 (NMC811) cathode upon high-voltage cycling are investigated. The results show that the NMC811 cathode not only experiences surface evolution with the formation of Li-deficient rock-salt layers, but also suffers from drastic intragranular structural changes inside bulk grains after high-voltage cycling. Direct evidence for the formation of transition-metal/Li disordering domains with uneven Li content and lattice plane distortion at the internal grains of 4.6 V-cycled NMC811 are provided with their atomic ordering and spatial distribution clearly resolved. The complex intragranular structural changes impede Li+ diffusion inside bulk material, resulting in kinetic limitation and capacity loss. The results demonstrate that the high-voltage cycling would induce severe structural degradation at the grain interior of the cathode material beyond surface evolution, which contributes significantly to the rapid performance decay of the NMC811 cathode. The findings provide new insights for developing effective countermeasures to mitigate this degradation pathway.

2.
Environ Monit Assess ; 194(6): 423, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35553245

RESUMEN

Metal leachate from mine tailings has the potential to release toxic metals into the surrounding environment. A single-step extraction procedure mimicking rainwater and a three-step BCR sequential extraction procedure (acid, reducing and oxidizing conditions) were applied to gold (GMT) and silver (SMT) mine tailings. Major (Al, Ca, Fe, Mg, and Mn) and trace metals were monitored to better understand the mobility and geochemistry of these metals when exposed to various environmental leaching conditions. Rainwater extraction released only small quantities of metals, while the three-step BCR extraction was more effective in mobilizing metals from the tailings. Under the acidic conditions of BCR step 1, Ca, Mg, Cd, Cu, and Mn were released in high concentrations. The dissolution of Fe, Ca, and Mg were dominant along with Pb in step 2 (reducing conditions). In step 3 (oxidizing conditions), Fe was the most dominant species together with Co, Cu, Ni, and Se. A high fraction of Al, Be, Cr, Li, Mo, Sb, Tl, and V remained in the residue. From SMT, larger quantities of As, Ca, Cd, and Zn were released compared to GMT. The BCR extraction could be applied to tailings to predict the potential release of toxic metals from mine wastes; however, excessive amounts of Ca and Fe in the tailings could cause carry-overs and incomplete extraction and carry-overs, resulting in a misinterpretation of results.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio , Monitoreo del Ambiente/métodos , Oro , Metales Pesados/análisis , Plata , Contaminantes del Suelo/análisis
3.
J Contam Hydrol ; 226: 103540, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31434016

RESUMEN

Surface/ground waters could be polluted when rain-water and/or snow-melt water infiltrate through waste rock piles at mine sites and dissolve secondary minerals (salts) from rock surfaces. It is important to reduce solute loading by the optimal configuration of waste rock piles. This requires the proper definition and determination of the characteristic properties of waste rock piles in terms of metal leaching and, in particular, rate control mechanisms and scaling laws, and their dependence upon configuration variables. For revealing these characteristic properties this paper proposes a pile-scale C-Q relation: C = Cs(1 - e-P/Q), (P ≡ kλßψ), where C and Cs are respectively solute concentration and particle's saturation concentration, Q is the flow rate of the water through a waste rock pile, k represents the effective or average dissolution coefficient of a mineral specie from rock surfaces, ß represents rock pile depth, λ represents the ratio of the sum of the surface areas of rocks to the volume that the rocks occupy, and ψ is the sum of the cross-sections of water-flow channels in a waste rock pile. The two characteristic properties revealed by the C-Q relation are: (1) P, the product of k, λ, ß, and ψ (P ≡ kλßψ), which is the characteristic property of a waste rock pile in terms of metal leaching, named here the solute production potential; and (2) the ratio of P to Q, P/Q, a non-dimensional number, designated as α (α ≡ P/Q), named here the rate control quotient, which is the scaling law and the rate control mechanism indicator. The value of α quantitatively indicates what controls the rate of mineral dissolution, and it also relates smaller-scale metal-leaching testing results to their corresponding full scales. When α becomes small, say α < 0.5, the rate of solute production potential P becomes in control, and the solute loading is nearly independent of Q; when α becomes larger, say α > 2.5, solute concentration would become close to its saturation concentration Cs, and Q determines solute loading (that is, the solute loading is proportional to Q). When 0.5 < α < 2.5, both Q and P are in control, a mixed control mechanism. The 20 years of measurements of mine drainage chemistry from the main waste rock piles at the Equity Silver mine, BC, Canada, are used to illustrate how to determine the two characteristic properties P and α, and how well they are able to describe the waste rock piles in terms of metal leaching.


Asunto(s)
Agua Subterránea , Contaminantes del Agua , Canadá , Metales , Modelos Teóricos
4.
J Chem Phys ; 126(19): 194303, 2007 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-17523800

RESUMEN

The authors investigated the interaction of oxometalloporphyrins (MO(por))--specifically, MoO(por), WO(por), TiO(por), VO(por), and CrO(por)--with O(2) by using first principles calculations. MoO(por) and WO(por) undergo reactions with O(2); on the other hand, TiO(por), VO(por), and CrO(por) do not. Next, they compared the interaction of MoO(por) and WO(por) with O(2). Activation barriers for the reactions of MoO(por) and WO(por) with a side-on O(2) are small. For MoO(por)(O(2)), the activation barrier for the reverse reaction that liberates O(2) is also small; however, that for WO(por)(O(2)) is large. The experimental results that photoirradiation with visible light or heating of Mo (VI)O(tmp)(O(2)) regenerates Mo (VI)O(tmp) by liberating O(2) while W (VI)O(tmp)(O(2)) does not [J. Tachibana, T. Imamura, and Y. Sasaki, Bull. Chem. Soc. Jpn. 71, 363 (1998)] are explained by the difference in activation barriers of the reverse reactions. This means that bonds formed between the W atom and O(2) are stronger than those between the Mo atom and O(2). The bond strengths can be explained by differences in the energy levels between the highest occupied molecular orbital of MoO(por) and WO(por), which are mainly formed from the a orbitals of the central metal atom and pi(*) orbitals of O(2).


Asunto(s)
Metaloporfirinas/química , Modelos Químicos , Modelos Moleculares , Oxígeno/química , Simulación por Computador , Conformación Molecular , Oxidación-Reducción
5.
J Chem Phys ; 122(24): 244719, 2005 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-16035805

RESUMEN

We investigate O(2) interaction with various metalloporphyrins (MnP, FeP, CoP, and NiP) using ab initio calculations based on density-functional theory. We discuss the trends in the activation barriers for the O-O bond cleavage in relation to the geometric, vibrational, electronic, and energetic properties of the systems. Whether the lowest unoccupied molecular orbital-highest occupied molecular orbital (LUMO-HOMO) levels of the metalloporphyrins involve the corresponding metal centers depends on the d orbital occupancies of the metals. We found that activation barriers for the O(2) dissociation can be mainly determined from the LUMO-HOMO characters of the metalloporphyrins, and consequently the FeP is the best catalyst with respect to the O(2) interaction from adsorption to dissociation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA