RESUMEN
Emerging coronaviruses are a global public health threat because of the potential for person-to-person transmission and high mortality rates. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing lethal respiratory disease in ¼35% of cases. Primate models of coronavirus disease are needed to support development of therapeutics, but few models exist that recapitulate severe disease. For initial development of a MERS-CoV primate model, 12 African green monkeys were exposed to 103, 104, or 105 PFU target doses of aerosolized MERS-CoV. We observed a dose-dependent increase of respiratory disease signs, although all 12 monkeys survived for the 28-day duration of the study. This study describes dose-dependent effects of MERS-CoV infection of primates and uses a route of infection with potential relevance to MERS-CoV transmission. Aerosol exposure of African green monkeys might provide a platform approach for the development of primate models of novel coronavirus diseases.
Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Animales , COVID-19 , Chlorocebus aethiops/virología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , SARS-CoV-2/patogenicidadRESUMEN
We aerosolized severe acute respiratory syndrome coronavirus 2 and determined that its dynamic aerosol efficiency surpassed those of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome. Although we performed experiment only once across several laboratories, our findings suggest retained infectivity and virion integrity for up to 16 hours in respirable-sized aerosols.
Asunto(s)
Aerosoles/aislamiento & purificación , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/transmisión , Transmisión de Enfermedad Infecciosa , Neumonía Viral/transmisión , Suspensiones/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Pandemias , Neumonía Viral/virología , SARS-CoV-2RESUMEN
Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.
Asunto(s)
Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/patogenicidad , Adenovirus de los Simios/patogenicidad , Animales , Biología Computacional/métodos , ADN Viral/genética , Evolución Molecular , Genoma Viral/genética , Genómica/métodos , Humanos , Pan paniscus/virología , Pan troglodytes/virología , Filogenia , Recombinación Genética/genética , ZoonosisRESUMEN
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Asunto(s)
Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Genoma Viral , Infecciones por Adenoviridae , Adenovirus Humanos/clasificación , Adenovirus de los Simios/clasificación , Animales , Evolución Molecular , Genómica , Humanos , Filogenia , ZoonosisRESUMEN
BACKGROUND: For most pathogens, iron (Fe) homeostasis is crucial for maintenance within the host and the ability to cause disease. The primary transcriptional regulator that controls intracellular Fe levels is the Fur (ferric uptake regulator) protein, which exerts its action on transcription by binding to a promoter-proximal sequence termed the Fur box. Fur-regulated transcriptional responses are often fine-tuned at the post-transcriptional level through the action of small regulatory RNAs (sRNAs). Consequently, identifying sRNAs contributing to the control of Fe homeostasis is important for understanding the Fur-controlled bacterial Fe-response network. RESULTS: In this study, we sequenced size-selected directional libraries representing sRNA samples from Neisseria gonorrhoeae strain FA 1090, and examined the Fe- and temporal regulation of these sRNAs. RNA-seq data for all time points identified a pool of at least 340 potential sRNAs. Differential analysis demonstrated that expression appeared to be regulated by Fe availability for at least fifteen of these sRNAs. Fourteen sRNAs were induced in high Fe conditions, consisting of both cis and trans sRNAs, some of which are predicted to control expression of a known virulence factor, and one SAM riboswitch. An additional putative cis-acting sRNA was repressed by Fe availability. In the pathogenic Neisseria species, one sRNA that contributes to Fe-regulated post-transcriptional control is the Fur-repressible sRNA NrrF. The expression of five Fe-induced sRNAs appeared to be at least partially controlled by NrrF, while the remainder was expressed independently of NrrF. The expression of the 14 Fe-induced sRNAs also exhibited temporal control, as their expression levels increased dramatically as the bacteria entered stationary phase. CONCLUSIONS: Here we report the temporal expression of Fe-regulated sRNAs in N. gonorrhoeae FA 1090 with several appearing to be controlled by the Fe-repressible sRNA NrrF. Temporal regulation of these sRNAs suggests a regulatory role in controlling functions necessary for survival, and may be important for phenotypes often associated with altered growth rates, such as biofilm formation or intracellular survival. Future functional studies will be needed to understand how these regulatory sRNAs contribute to gonococcal biology and pathogenesis.
Asunto(s)
Hierro/farmacología , Neisseria gonorrhoeae/genética , ARN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/crecimiento & desarrollo , ARN Bacteriano/química , ARN Bacteriano/aislamiento & purificación , Riboswitch/efectos de los fármacos , Riboswitch/genética , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Human adenoviruses (HAdVs) contain seven species (HAdV-A to -G), each associated with specific disease conditions. Among these, HAdV-D includes those viruses associated with epidemic keratoconjunctivitis (EKC), a severe ocular surface infection. The reasons for corneal tropism for some but not all HAdV-Ds are not known. The fiber protein is a major capsid protein; its C-terminal "knob" mediates binding with host cell receptors to facilitate subsequent viral entry. In a comprehensive phylogenetic analysis of HAdV-D capsid genes, fiber knob gene sequences of HAdV-D types associated with EKC formed a unique clade. By proteotyping analysis, EKC virus-associated fiber knobs were uniquely shared. Comparative structural modeling showed no distinct variations in fiber knobs of EKC types but did show variation among HAdV-Ds in a region overlapping with the known CD46 binding site in HAdV-B. We also found signature amino acid positions that distinguish EKC from non-EKC types, and by in vitro studies we showed that corneal epithelial cell tropism can be predicted by the presence of a lysine or alanine at residue 240. This same amino acid residue in EKC viruses shows evidence for positive selection, suggesting that evolutionary pressure enhances fitness in corneal infection, and may be a molecular determinant in EKC pathogenesis. IMPORTANCE: Viruses adapt various survival strategies to gain entry into target host cells. Human adenovirus (HAdV) types are associated with distinct disease conditions, yet evidence for connections between genotype and cellular tropism is generally lacking. Here, we provide a structural and evolutionary basis for the association between specific genotypes within HAdV species D and epidemic keratoconjunctivitis, a severe ocular surface infection. We find that HAdV-D fiber genes of major EKC pathogens, specifically the fiber knob gene region, share a distinct phylogenetic clade. Deeper analysis of the fiber gene revealed that evolutionary pressure at crucial amino acid sites has a significant impact on its structural conformation, which is likely important in host cell binding and entry. Specific amino acids in hot spot residues provide a link to ocular cell tropism and possibly to corneal pathogenesis.
Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Queratoconjuntivitis/virología , Células A549 , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Línea Celular Tumoral , Córnea/virología , ADN Viral/genética , Genotipo , Humanos , Filogenia , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN , Internalización del VirusRESUMEN
BACKGROUND: Similar to Gram-negative organisms, Borrelia spirochetes are dual-membrane organisms with both an inner and outer membrane. Although the outer membrane contains integral membrane proteins, few of the borrelial outer membrane proteins (OMPs) have been identified and characterized to date. Therefore, we utilized a consensus computational network analysis to identify novel borrelial OMPs. RESULTS: Using a series of computer-based algorithms, we selected all protein-encoding sequences predicted to be OM-localized and/or to form ß-barrels in the borrelial OM. Using this system, we identified 41 potential OMPs from B. burgdorferi and characterized three (BB0838, BB0405, and BB0406) to confirm that our computer-based methodology did, in fact, identify borrelial OMPs. Triton X-114 phase partitioning revealed that BB0838 is found in the detergent phase, which would be expected of a membrane protein. Proteolysis assays indicate that BB0838 is partially sensitive to both proteinase K and trypsin, further indicating that BB0838 is surface-exposed. Consistent with a prior study, we also confirmed that BB0405 is surface-exposed and associates with the borrelial OM. Furthermore, we have shown that BB0406, the product of a co-transcribed downstream gene, also encodes a novel, previously uncharacterized borrelial OMP. Interestingly, while BB0406 has several physicochemical properties consistent with it being an OMP, it was found to be resistant to surface proteolysis. Consistent with BB0405 and BB0406 being OMPs, both were found to be capable of incorporating into liposomes and exhibit pore-forming activity, suggesting that both proteins are porins. Lastly, we expanded our computational analysis to identify OMPs from other borrelial organisms, including both Lyme disease and relapsing fever spirochetes. CONCLUSIONS: Using a consensus computer algorithm, we generated a list of candidate OMPs for both Lyme disease and relapsing fever spirochetes and determined that three of the predicted B. burgdorferi proteins identified were indeed novel borrelial OMPs. The combined studies have identified putative spirochetal OMPs that can now be examined for their roles in virulence, physiology, and disease pathogenesis. Importantly, the studies described in this report provide a framework by which OMPs from any human pathogen with a diderm ultrastructure could be cataloged to identify novel virulence factors and vaccine candidates.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Borrelia burgdorferi/química , Algoritmos , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Redes de Comunicación de Computadores , Metodologías Computacionales , Consenso , Genoma Bacteriano , Humanos , Liposomas/metabolismo , Enfermedad de Lyme/microbiología , Operón , Porinas/metabolismo , Potencia de la Vacuna , Factores de Virulencia/metabolismoRESUMEN
Inhalational anthrax is characterized by extensive bacteremia and toxemia as well as nonspecific to mild flu-like symptoms, until the onset of hypotension, shock, and mortality. Without treatment, the mortality rate approaches 100%. Antibiotic treatment is not always effective, and alternative treatments are needed, such as monotherapy for antibiotic-resistant inhalational anthrax or as an adjunct therapy in combination with antibiotics. The Bacillus anthracis antitoxin monoclonal antibody (MAb) ETI-204 is a high-affinity chimeric deimmunized antibody which targets the anthrax toxin protective antigen (PA). In this study, a partial protection New Zealand White (NZW) rabbit model was used to evaluate the protective efficacy of the adjunct therapy with the MAb. Following detection of PA in the blood, NZW rabbits were administered either an antibiotic (doxycycline) alone or the antibiotic in conjunction with ETI-204. Survival was evaluated to compare the efficacy of the combination adjunct therapy with that of an antibiotic alone in treating inhalational anthrax. Overall, the results from this study indicate that a subtherapeutic regimen consisting of an antibiotic in combination with an anti-PA MAb results in increased survival compared to the antibiotic alone and would provide an effective therapeutic strategy against symptomatic anthrax in nonvaccinated individuals.
Asunto(s)
Carbunco/tratamiento farmacológico , Antibacterianos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Animales , Carbunco/microbiología , Carbunco/patología , Antitoxinas/uso terapéutico , Bacillus anthracis , Bacteriemia/microbiología , Encéfalo/patología , Doxiciclina/uso terapéutico , Femenino , Exposición por Inhalación , Masculino , Conejos , Esporas Bacterianas , Análisis de SupervivenciaRESUMEN
BACKGROUND: The Bacillus cereus sensu lato group contains ubiquitous facultative anaerobic soil-borne Gram-positive spore-forming bacilli. Molecular phylogeny and comparative genome sequencing have suggested that these organisms should be classified as a single species. While clonal in nature, there do not appear to be species-specific clonal lineages, excepting B. anthracis, in spite of the wide array of phenotypes displayed by these organisms. RESULTS: We compared the protein-coding content of 201 B. cereus sensu lato genomes to characterize differences and understand the consequences of these differences on biological function. From this larger group we selected a subset consisting of 25 whole genomes for deeper analysis. Cluster analysis of orthologous proteins grouped these genomes into five distinct clades. Each clade could be characterized by unique genes shared among the group, with consequences for the phenotype of each clade. Surprisingly, this population structure recapitulates our recent observations on the divergence of the generalized stress response (SigB) regulons in these organisms. Divergence of the SigB regulon among these organisms is primarily due to the placement of SigB-dependent promoters that bring genes from a common gene pool into/out of the SigB regulon. CONCLUSIONS: Collectively, our observations suggest the hypothesis that the evolution of these closely related bacteria is a consequence of two distinct processes. Horizontal gene transfer, gene duplication/divergence and deletion dictate the underlying coding capacity in these genomes. Regulatory divergence overlays this protein coding reservoir and shapes the expression of both the unique and shared coding capacity of these organisms, resulting in phenotypic divergence. Data from other organisms suggests that this is likely a common pattern in prokaryotic evolution.
Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Bacillus cereus/clasificación , Bacillus cereus/metabolismo , Análisis por Conglomerados , Evolución Molecular , Genoma Bacteriano , Fenotipo , Filogenia , RegulónRESUMEN
Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D) revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open reading frames for E3 CR1α, CR1ß, and CR1γ, similar to that previously observed with genes encoding the three major structural capsid proteins, the penton base, hexon, and fiber.
Asunto(s)
Proteínas E3 de Adenovirus/genética , Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Recombinación Homóloga , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Biología Computacional , ADN Viral/genética , Evolución Molecular , Genoma Viral , Humanos , FilogeniaRESUMEN
Regulation of gene expression by small noncoding RNAs (sRNAs) plays a critical role in bacterial response to physiological stresses. NrrF, a trans-acting sRNA in Neisseria meningitidis and Neisseria gonorrhoeae, has been shown in the meningococcus to control indirectly, in response to iron (Fe) availability, the transcription of genes encoding subunits of succinate dehydrogenase, a Fe-requiring enzyme. Given that in other organisms, sRNAs target multiple mRNAs to control gene expression, we used a global approach to examine the role of NrrF in controlling gonococcal transcription. Three strains, including N. gonorrhoeae FA1090, an nrrF deletion mutant, and a complemented derivative, were examined using a custom CombiMatrix microarray to assess the role of this sRNA in controlling gene expression in response to Fe availability. In the absence of NrrF, the mRNA half-lives for 12 genes under Fe-depleted growth conditions were longer than those in FA1090. The 12 genes controlled by NrrF encoded proteins with biological functions including energy metabolism, oxidative stress, antibiotic resistance, and amino acid synthesis, as well as hypothetical proteins and a regulatory protein whose functions are not fully understood.
Asunto(s)
Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Análisis por Micromatrices , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Succinato Deshidrogenasa/biosíntesis , Transcripción GenéticaRESUMEN
The genome of human adenovirus (HAdV) D30 was sequenced in depth. Sequence assembly and analysis revealed two distinct viral sequences with identical hexon genes, which were the same as the one previously reported for HAdV-D30. However, one of the two viruses was found to be a recombinant of HAdV-D29. Exclusive reliance on serum neutralization can lead to mischaracterization of adenoviruses and miss coinfections. Whole-genome sequencing remains the gold standard for proper classification of HAdVs.
Asunto(s)
Adenovirus Humanos/clasificación , Proteínas de la Cápside/genética , Adenovirus Humanos/genética , Línea Celular , Biología Computacional/métodos , Genoma Viral , Humanos , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADNRESUMEN
Five genomes of human subspecies B1 adenoviruses isolated from cases of acute respiratory disease have been sequenced and archived for reference. These include representatives of two prevalent genomic variants of HAdV-7, i.e., HAdV-7h and HAdV-7d2. The other three are HAdV-3/16, HAdV-16 strain E26, and HAdV-3+7 strain Takeuchi. All are recombinant genomes. Genomics and bioinformatics provide detailed views into the genetic makeup of these pathogens and insight into their molecular evolution. Retrospective characterization of particularly problematic older pathogens such as HAdV-7h (1987) and intriguing isolates such as HAdV-3+7 strain Takeuchi (1958) may provide clues to their phenotypes and serology and may suggest protocols for prevention and treatment.
Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Genoma Viral , Infecciones del Sistema Respiratorio/virología , Enfermedad Aguda , Adenovirus Humanos/clasificación , Adenovirus Humanos/aislamiento & purificación , Secuencia de Bases , Humanos , Datos de Secuencia MolecularRESUMEN
INTRODUCTION: The aim of this study was to assess the diagnostic accuracy and surface matching characteristics of 3-dimensional digital dental models obtained from various sources. METHODS: Three sets of maxillary and mandibular digital models of 30 subjects were included in this study. Three-dimensional stereolithography model files were obtained from a 3-dimensional laser desktop scanner (Ortho-Insight 3D; Motionview Software, Hixson, Tenn), the emodel system (GeoDigm, Chanhassen, Minn), and cone-beam computerized tomography. Arch-length discrepancy measurements were made on the 3-dimensional digital models and compared with direct caliper measurements. Additionally, stereolithography files from the 3 digital model systems were paired and superimposed using a best-fit algorithm. Average linear differences between the stereolithography shells were computed together with surface correlation amounts at various tolerance levels. Data were evaluated using intraclass correlation coefficients and the Tukey mean difference test. RESULTS: Although all 3 digital model groups displayed good correlation with caliper measurements, the virtual scan models had the highest correlation with the manual method (ICC > 0.95). The Tukey mean difference test showed no consistent bias of one approach vs the others compared with caliper measurements; random errors were detected in all the comparisons. For the estimation of arch-length discrepancy, the mean bias of the scanned virtual models in comparison with caliper measurements (0.24 ± 0.67 mm) was smaller than the mean biases of the emodels and the models generated from cone-beam computed tomography. Additionally, the best surface overlap correlation was observed between the virtual scanned models and the emodels. The mean linear distances between the stereolithography shells of these 2 model systems were 0.14 and 0.13 mm for the maxillary and mandibular arches, respectively. CONCLUSIONS: All 3 digital model systems can provide diagnostic information similar to caliper measurements, with varying degrees of agreement limits. The scanned virtual models had the least mean bias. A strong surface match correlation was observed between the virtual scanned models and the emodels, indicating that these could be used interchangeably.
Asunto(s)
Arco Dental/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/instrumentación , Modelos Dentales , Adolescente , Adulto , Análisis de Varianza , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Programas InformáticosRESUMEN
Burkholderia pseudomallei, the causative agent of the disease melioidosis, has been isolated from the environment in 45 countries. The treatment of melioidosis is complex, requiring lengthy antibiotic regimens, which can result in the relapse of the disease following treatment cessation. It is important that novel therapies to treat infections with B. pseudomallei be assessed in appropriate animal models, and discussions regarding the different protocols used between laboratories are critical. A 'deep dive' was held in October 2020 focusing on the use of the BALB/c mouse model and the inhalational route of infection to evaluate new antibiotic therapies.
RESUMEN
Flavobacterium columnare is a Gram-negative, rod-shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512.
Asunto(s)
Enfermedades de los Peces/microbiología , Flavobacterium/clasificación , Flavobacterium/genética , Genoma Bacteriano , Animales , Peces , Biblioteca de Genes , Datos de Secuencia MolecularRESUMEN
BACKGROUND: The Bacillus cereus sensu lato group currently includes seven species (B. cereus, B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis, B. weihenstephanensis and B. cytotoxicus) that recent phylogenetic and phylogenomic analyses suggest are likely a single species, despite their varied phenotypes. Although horizontal gene transfer and insertion-deletion events are clearly important for promoting divergence among these genomes, recent studies have demonstrated that a major basis for phenotypic diversity in these organisms may be differential regulation of the highly similar gene content shared by these organisms. To explore this hypothesis, we used an in silico approach to evaluate the relationship of pathogenic potential and the divergence of the SigB-dependent general stress response within the B. cereus sensu lato group, since SigB has been demonstrated to support pathogenesis in Bacillus, Listeria and Staphylococcus species. RESULTS: During the divergence of these organisms from a common "SigB-less" ancestor, the placement of SigB promoters at varied locations in the B. cereus sensu lato genomes predict alternative structures for the SigB regulon in different organisms. Predicted promoter changes suggesting differential transcriptional control of a common gene pool predominate over evidence of indels or horizontal gene transfer for explaining SigB regulon divergence. CONCLUSIONS: Four lineages of the SigB regulon have arisen that encompass different gene contents and suggest different strategies for supporting pathogenesis. This is consistent with the hypothesis that divergence within the B. cereus sensu lato group rests in part on alternative strategies for regulation of a common gene pool.
Asunto(s)
Bacillus/patogenicidad , Proteínas Bacterianas/genética , Evolución Molecular , Regulón , Factor sigma/genética , Bacillus/clasificación , Bacillus/genética , Sitios de Unión , Transferencia de Gen Horizontal , Genoma Bacteriano , Familia de Multigenes , FilogeniaRESUMEN
Previous studies have shown that the MpeR transcriptional regulator produced by Neisseria gonorrhoeae represses the expression of mtrF, which encodes a putative inner membrane protein (MtrF). MtrF works as an accessory protein with the Mtr efflux pump, helping gonococci to resist high levels of diverse hydrophobic antimicrobials. Regulation of mpeR has been reported to occur by an iron-dependent mechanism involving Fur (ferric uptake regulator). Collectively, these observations suggest the presence of an interconnected regulatory system in gonococci that modulates the expression of efflux pump protein-encoding genes in an iron-responsive manner. Herein, we describe this connection and report that levels of gonococcal resistance to a substrate of the mtrCDE-encoded efflux pump can be modulated by MpeR and the availability of free iron. Using microarray analysis, we found that the mtrR gene, which encodes a direct repressor (MtrR) of mtrCDE, is an MpeR-repressed determinant in the late logarithmic phase of growth when free iron levels would be reduced due to bacterial consumption. This repression was enhanced under conditions of iron limitation and resulted in increased expression of the mtrCDE efflux pump operon. Furthermore, as judged by DNA-binding analysis, MpeR-mediated repression of mtrR was direct. Collectively, our results indicate that both genetic and physiologic parameters (e.g., iron availability) can influence the expression of the mtr efflux system and modulate levels of gonococcal susceptibility to efflux pump substrates.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Reguladoras del Hierro/genética , Hierro/metabolismo , Neisseria gonorrhoeae/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Sitios Genéticos , Humanos , Proteínas Reguladoras del Hierro/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neisseria gonorrhoeae/efectos de los fármacos , Operón , Plásmidos , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
As one of the first five human adenoviruses (HAdVs) to be sequenced, type 17 was important as a reference tool for comparative genomics of recently isolated HAdV pathogens in species D. HAdV-D17 was the first species D adenovirus to be sequenced and was deposited in GenBank in 1999. These genome data were not of high quality, and a redetermination of the same stock virus provides corrected data; among the differences are a length of 35,139 bp versus 35,100 bp in the original, and 160 mismatches to the original genome were found. Annotation of the coding sequences reveals 39 as opposed to 8, a finding which is important for phylogenomic studies.
Asunto(s)
Infecciones por Adenoviridae/virología , Adenovirus Humanos/genética , Adenovirus Humanos/aislamiento & purificación , ADN Viral/genética , Genoma Viral , ADN Viral/química , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADNRESUMEN
This study assess the population diversity and temporal variability of caused by Fusarium oxysporum f. sp. vasinfectum (FOV) races/genotypes infecting cotton cultivars with either FOV or Meloidogyne incognita resistance. All plants sampled demonstrated typical symptoms of FOV including wilting, chlorosis and necrosis of the leaves, and discoloration of the vascular tissue in the stem. A diverse population of FOV was characterized. Eight races/genotypes of FOV were collected throughout the three site years. FOV race 1 was the most predominant in all tests (AUDPC=101.1); statistically higher numbers of isolates from LA-108 (AUDPC=59.9), race 8 (AUDPC=47.5), and race 2 (AUDPC=38.6) were also found compared to other races and genotypes collected. FOV race 1, race 2, race 8, and 108 were the most virulent races identified. The genotypes MDS-12, LA-110, and LA-127/140 were found in all tests but at a low incidence, and LA-112 was only found in trace amounts. MDS-12, LA-110, LA-112, and LA-127/140 produced less disease pressure. FOV race 4 which is highly virulent and present in California and Texas was not found in Alabama. A positive correlation was observed between the accumulation of growing degree days and FOV race 1, race 2, race 8, LA-108, and LA-110. Later symptom expression influenced by seasonal heat partially mitigates damage allowing cotton to produce bolls though they may be reduced in number and lint quality. Plant resistance to the FOV as expressed in these cultivars appears to provide better protection than M. incognita resistance. PhytoGen 72, which is resistant to FOV races/genotypes had low levels of FOV infection even though it sustained a high level of M. incognita root population density. The M. incognita resistant cultivars Deltapine 1558NR B2RF and PhytoGen 480 W3FE supported a lower nematode population density, however, FOV disease incidence was not reduced. FOV races/genotypes did not vary significantly between the nematode resistant and nematode susceptible cultivars.