RESUMEN
OBJECTIVE: Abdominal aortic aneurysm (AAA) is commonly defined as localised aortic dilatation with a diameter > 30 mm. The pathophysiology of AAA includes chronic inflammation and enzymatic degradation of elastin, possibly increasing aortic wall stiffness and pulse wave velocity (PWV). Whether aortic stiffness is more prominent in the abdominal aorta at the aneurysm site is not elucidated. The aim of this study was to evaluate global and regional aortic PWV in patients with AAA. METHODS: Experimental study of local PWV in the thoracic descending and abdominal aorta in patients with AAA and matched controls. The study cohort comprised 25 patients with an AAA > 30 mm (range 36 - 70 mm, all male, age range 65 - 76 years) and 27 age and sex matched controls free of AAA. PWV was measured with applanation tonometry (carotid-femoral PWV, cfPWV) as well as a 4D flow MRI technique, assessing regional aortic PWV. Blood pressure and anthropometrics were measured. RESULTS: Global aortic PWV was greater in men with an AAA than controls, both by MRI (AAA 8.9 ± 2.4 m/s vs. controls 7.1 ± 1.5 m/s; p = .007) and cfPWV (AAA 11.0 ± 2.1 m/s vs. controls 9.3 ± 2.3 m/s; p = .007). Regionally, PWV was greater in the abdominal aorta in the AAA group (AAA 7.0 ± 1.8 m/s vs. controls 5.8 ± 1.0 m/s; p = .022), but similar in the thoracic descending aorta (AAA 8.7 ± 3.2 m/s vs. controls 8.2 ± 2.4 m/s; p = .59). Furthermore, PWV was positively associated with indices of central adiposity both in men with AAA and controls. CONCLUSION: PWV is higher in men with AAA compared with matched controls in the abdominal but not the thoracic descending aorta. Furthermore, aortic stiffness was linked with central fat deposition. It remains to be seen whether there is a causal link between AAA and increased regional aortic stiffness.
Asunto(s)
Aneurisma de la Aorta Abdominal , Rigidez Vascular , Humanos , Masculino , Anciano , Femenino , Análisis de la Onda del Pulso , Aneurisma de la Aorta Abdominal/cirugía , Aorta Abdominal , Aorta Torácica , Imagen por Resonancia MagnéticaRESUMEN
Type 2 diabetes (T2D) and hypertension increase the risk of cardiovascular diseases mediated by whole-body changes to metabolism, cardiovascular structure and haemodynamics. The haemodynamic changes related to hypertension and T2D are complex and subject-specific, however, and not fully understood. We aimed to investigate the haemodynamic mechanisms in T2D and hypertension by comparing the haemodynamics between healthy controls and subjects with T2D, hypertension, or both. For all subjects, we combined 4D flow magnetic resonance imaging data, brachial blood pressure and a cardiovascular mathematical model to create a comprehensive subject-specific analysis of central haemodynamics. When comparing the subject-specific haemodynamic parameters between the four groups, the predominant haemodynamic difference is impaired left ventricular relaxation in subjects with both T2D and hypertension compared to subjects with only T2D, only hypertension and controls. The impaired relaxation indicates that, in this cohort, the long-term changes in haemodynamic load of co-existing T2D and hypertension cause diastolic dysfunction demonstrable at rest, whereas either disease on its own does not. However, through subject-specific predictions of impaired relaxation, we show that altered relaxation alone is not enough to explain the subject-specific and group-related differences; instead, a combination of parameters is affected in T2D and hypertension. These results confirm previous studies that reported more adverse effects from the combination of T2D and hypertension compared to either disease on its own. Furthermore, this shows the potential of personalized cardiovascular models in providing haemodynamic mechanistic insights and subject-specific predictions that could aid in the understanding and treatment planning of patients with T2D and hypertension. KEY POINTS: The combination of 4D flow magnetic resonance imaging data and a cardiovascular mathematical model allows for a comprehensive analysis of subject-specific haemodynamic parameters that otherwise cannot be derived non-invasively. Using this combination, we show that diastolic dysfunction in subjects with both type 2 diabetes (T2D) and hypertension is the main group-level difference between controls, subjects with T2D, subjects with hypertension, and subjects with both T2D and hypertension. These results suggest that, in this relatively healthy population, the additional load of both hypertension and T2D affects the haemodynamic function of the left ventricle, whereas each disease on its own is not enough to cause significant effects under resting conditions. Finally, using the subject-specific model, we show that the haemodynamic effects of diastolic dysfunction alone are not sufficient to explain all the observed haemodynamic differences. Instead, additional subject-specific variations in cardiac and vascular function combine to explain the complex haemodynamics of subjects affected by hypertension and/or T2D.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Modelos Cardiovasculares , Hemodinámica , Imagen por Resonancia Magnética , Ventrículos CardíacosRESUMEN
BACKGROUND: Decisions in the management of aortic stenosis are based on the peak pressure drop, captured by Doppler echocardiography, whereas gold standard catheterization measurements assess the net pressure drop but are limited by associated risks. The relationship between these two measurements, peak and net pressure drop, is dictated by the pressure recovery along the ascending aorta which is mainly caused by turbulence energy dissipation. Currently, pressure recovery is considered to occur within the first 40-50 mm distally from the aortic valve, albeit there is inconsistency across interventionist centers on where/how to position the catheter to capture the net pressure drop. METHODS: We developed a non-invasive method to assess the pressure recovery distance based on blood flow momentum via 4D Flow cardiovascular magnetic resonance (CMR). Multi-center acquisitions included physical flow phantoms with different stenotic valve configurations to validate this method, first against reference measurements and then against turbulent energy dissipation (respectively n = 8 and n = 28 acquisitions) and to investigate the relationship between peak and net pressure drops. Finally, we explored the potential errors of cardiac catheterisation pressure recordings as a result of neglecting the pressure recovery distance in a clinical bicuspid aortic valve (BAV) cohort of n = 32 patients. RESULTS: In-vitro assessment of pressure recovery distance based on flow momentum achieved an average error of 1.8 ± 8.4 mm when compared to reference pressure sensors in the first phantom workbench. The momentum pressure recovery distance and the turbulent energy dissipation distance showed no statistical difference (mean difference of 2.8 ± 5.4 mm, R2 = 0.93) in the second phantom workbench. A linear correlation was observed between peak and net pressure drops, however, with strong dependences on the valvular morphology. Finally, in the BAV cohort the pressure recovery distance was 78.8 ± 34.3 mm from vena contracta, which is significantly longer than currently accepted in clinical practise (40-50 mm), and 37.5% of patients displayed a pressure recovery distance beyond the end of the ascending aorta. CONCLUSION: The non-invasive assessment of the distance to pressure recovery is possible by tracking momentum via 4D Flow CMR. Recovery is not always complete at the ascending aorta, and catheterised recordings will overestimate the net pressure drop in those situations. There is a need to re-evaluate the methods that characterise the haemodynamic burden caused by aortic stenosis as currently clinically accepted pressure recovery distance is an underestimation.
Asunto(s)
Estenosis de la Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Humanos , Valor Predictivo de las Pruebas , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Válvula Aórtica/diagnóstico por imagen , Hemodinámica , Espectroscopía de Resonancia Magnética , Velocidad del Flujo Sanguíneo/fisiologíaRESUMEN
Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.
Asunto(s)
Sistema Cardiovascular , Humanos , Velocidad del Flujo Sanguíneo , Valor Predictivo de las Pruebas , Corazón , Imagen por Resonancia Magnética , Espectroscopía de Resonancia MagnéticaRESUMEN
BACKGROUND: Lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) are morphological features of high-risk atherosclerotic plaques. However, their relationship to circulating lipoproteins is unclear. PURPOSE: To study associations between changes in lipoproteins vs. changes in LRNC (represented by fat fraction [FF]) and IPH (represented by R2*). STUDY TYPE: Prospective. SUBJECTS: Fifty-two patients with carotid plaques, 33 males (63.5%), mean age 72 (±5). FIELD STRENGTH/SEQUENCE: Four-point fast gradient Dixon magnetic resonance imaging (MRI) was used to quantify FF and R2* (to measure IPH) inside plaques and in vessel wall. Turbo-spin echo was used for T1 weighted sequences to guide manual segmentation. ASSESSMENT: Carotid MRI and serum lipid levels were assessed at baseline and at 1-year follow-up. For patients, lipid-lowering therapy was customized to reduce low-density lipoprotein (LDL) levels below 1.8 mmol/L. Segmentation was performed with one set of regions of interest for the plaque and one for the vessel wall at the location of the plaque. Thereby MRI data for FF, R2*, and volumes in plaque- and vessel-wall segmentations could be obtained from baseline and follow-up, as well as changes over the study year. STATISTICAL TESTS: Pearson correlation coefficient for correlations. Paired samples t-test for changes over time. Significance at P < 0.05, 95% confidence interval. RESULTS: LDL decreased significantly (2.19-1.88 mmol/L, Z - 2.9), without correlation to changes in plaque composition, nor to the significant reduction in vessel-wall volume (-106.3 mm3 ). Plaque composition remained unchanged, FF +8.5% (P = 0.366) and R2* +3.5% (P = 0.304). Compared to plaque segmentations, R2* was significantly lower in the vessel-wall segmentations both at baseline (-9.3%) and at follow-up (-9.1%). DATA CONCLUSION: The absence of correlations between changes in lipoproteins and changes in plaque composition indicates more complex relationships between these parameters than previously anticipated. The significant differences in both R2* and volume dynamics comparing plaque segmentations and vessel-wall segmentations suggest differences in their pathobiology of atherosclerosis. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.
Asunto(s)
Estenosis Carotídea , Placa Aterosclerótica , Anciano , Arterias Carótidas/diagnóstico por imagen , Femenino , Hemorragia , Humanos , Lípidos , Lipoproteínas , Imagen por Resonancia Magnética/métodos , Masculino , Necrosis , Placa Amiloide , Placa Aterosclerótica/diagnóstico por imagen , Estudios ProspectivosRESUMEN
BACKGROUND: Abdominal aortic aneurysms (AAA) can lead to catastrophic events such as dissection or rupture, and are an expression of general aortic disease. Low wall shear stress (WSS), high oscillatory shear index (OSI), and high relative residence time (RRT) have been correlated against increased uptake of inflammatory markers in the vessel wall and may improve risk stratification of AAA. We sought to obtain a comprehensive view of WSS, OSI, and RRT in the whole aorta for patients with AAA and age-matched elderly controls and young normal controls. METHODS: 4D Flow cardiovascular magnetic resonance images of the whole aorta were acquired in 18 AAA patients (70.8 ± 3.4 years), 22 age-matched controls (71.4 ± 3.4 years), and 23 young subjects (23.3 ± 3.1 years), all males. Three-dimensional segmentations of the whole aorta were created for all timeframes using a semi-automatic approach. The aorta was divided into five segments: ascending aorta, arch, descending aorta, suprarenal and infrarenal abdominal aorta. For each segment, average values of peak WSS, OSI, and RRT were computed. Student's t-tests were used to compare values between the three cohorts (AAA patients vs elderly controls, and elderly controls vs young controls) where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. RESULTS: AAA patients had lower peak WSS in the descending aorta as well as in the abdominal aorta compared to elderly controls (p ≤ 0.001), similar OSI, but higher RRT in the descending and abdominal aorta (p ≤ 0.001). Elderly controls had lower peak WSS compared to young controls throughout the aorta (p < 0.001), higher OSI in all segments except for the infrarenal aorta (p < 0.001), and higher RRT throughout the aorta, except the infrarenal aorta (p < 0.001). CONCLUSIONS: This study provides novel insights into WSS, OSI, and RRT in patients with AAA in relation to normal ageing, highlighting how AAA patients have markedly abnormal hemodynamic stresses not only in the infrarenal, but in the entire aorta. Moreover, we identified RRT as a marker for abnormal AAA hemodynamics. Further investigations are needed to explore if RRT or other measures of hemodynamics stresses best predict AAA growth and/or rupture.
Asunto(s)
Aneurisma de la Aorta Abdominal , Anciano , Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Hemodinámica , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Factores de Riesgo , Estrés MecánicoRESUMEN
BACKGROUND: Non-invasive imaging is of interest for tracking the progression of atherosclerosis in the carotid bifurcation, and segmenting this region into its constituent branch arteries is necessary for analyses. The purpose of this study was to validate and demonstrate a method for segmenting the carotid bifurcation into the common, internal, and external carotid arteries (CCA, ICA, ECA) in contrast-enhanced MR angiography (CE-MRA) data. METHODS: A segmentation pipeline utilizing a convolutional neural network (DeepMedic) was tailored and trained for multi-class segmentation of the carotid arteries in CE-MRA data from the Swedish CardioPulmonsary bioImage Study (SCAPIS). Segmentation quality was quantitatively assessed using the Dice similarity coefficient (DSC), Matthews Correlation Coefficient (MCC), F2, F0.5, and True Positive Ratio (TPR). Segmentations were also assessed qualitatively, by three observers using visual inspection. Finally, geometric descriptions of the carotid bifurcations were generated for each subject to demonstrate the utility of the proposed segmentation method. RESULTS: Branch-level segmentations scored DSC = 0.80 ± 0.13, MCC = 0.80 ± 0.12, F2 = 0.82 ± 0.14, F0.5 = 0.78 ± 0.13, and TPR = 0.84 ± 0.16, on average in a testing cohort of 46 carotid bifurcations. Qualitatively, 61% of segmentations were judged to be usable for analyses without adjustments in a cohort of 336 carotid bifurcations without ground-truth. Carotid artery geometry showed wide variation within the whole cohort, with CCA diameter 8.6 ± 1.1 mm, ICA 7.5 ± 1.4 mm, ECA 5.7 ± 1.0 mm and bifurcation angle 41 ± 21°. CONCLUSION: The proposed segmentation method automatically generates branch-level segmentations of the carotid arteries that are suitable for use in further analyses and help enable large-cohort investigations.
Asunto(s)
Aterosclerosis/diagnóstico por imagen , Arterias Carótidas/anatomía & histología , Arterias Carótidas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Angiografía por Resonancia Magnética/métodos , Redes Neurales de la Computación , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Medios de Contraste , Aprendizaje Profundo , HumanosRESUMEN
BACKGROUND: A reduction in scan time of 4D Flow MRI would facilitate clinical application. A recent study indicates that echo-planar imaging (EPI) 4D Flow MRI allows for a reduction in scan time and better data quality than the recommended k-space segmented spoiled gradient echo (SGRE) sequence. It was argued that the poor data quality of SGRE was related to the nonrecommended absence of respiratory motion compensation. However, data quality can also be affected by the background offset compensation. PURPOSE: To compare the data quality of respiratory motion-compensated SGRE and EPI 4D Flow MRI and their dependence on background correction (BC) order. STUDY TYPE: Retrospective. SUBJECTS: Eighteen healthy subjects (eight female, mean age 32 ± 5 years). FIELD STRENGTH AND SEQUENCE: 1.5 T. [Correction added on July 26, 2019, after first online publication: The preceding field strength was corrected.] SGRE and EPI-based 4D Flow MRI. ASSESSMENT: Data quality was investigated visually and by comparing flows through the cardiac valves and aorta. Measurements were obtained from transvalvular flow and pathline analysis. STATISTICAL TESTS: Linear regression and Bland-Altman analysis were used. Wilcoxon test was used for comparison of visual scoring. Student's t-test was used for comparison of flow volumes. RESULTS: No significant difference was found by visual inspection (P = 0.08). Left ventricular (LV) flows were strongly and very strongly associated with SGRE and EPI, respectively (R2 = 0.86-0.94 SGRE; 0.71-0.79 EPI, BC0-4). LV and right ventricular (RV) outflows and LV pathline flows were very strongly associated (R2 = 0.93-0.95 SGRE; 0.88-0.91 EPI, R2 = 0.91-0.95 SGRE; 0.91-0.93 EPI, BC1-4). EPI LV outflow was lower than the short-axis-based stroke volume. EPI RV outflow and proximal descending aortic flow were lower than SGREs. DATA CONCLUSION: Both sequences yielded good internal data consistency when an adequate background correction was applied. Second and first BC order were considered sufficient for transvalvular flow analysis in SGRE and EPI, respectively. Higher BC orders were preferred for particle tracing. Level of Evidence 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2020;51:885-896.
Asunto(s)
Exactitud de los Datos , Imagen Eco-Planar , Adulto , Femenino , Ventrículos Cardíacos , Humanos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
BACKGROUND: MRI can be used to generate fat fraction (FF) and R2* data, which have been previously shown to characterize the plaque compositional features lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in the carotid arteries (CAs). Previously, these data were extracted from CA plaques using time-consuming manual analyses. PURPOSE: To design and demonstrate a method for segmenting the CA and extracting data describing the composition of the vessel wall. STUDY TYPE: Prospective. SUBJECTS: 31 subjects from the Swedish CArdioPulmonary bioImage Study (SCAPIS). FIELD STRENGTH/SEQUENCES: T1 -weighted (T1 W) quadruple inversion recovery, contrast-enhanced MR angiography (CE-MRA), and 4-point Dixon data were acquired at 3T. ASSESSMENT: The vessel lumen of the CA was automatically segmented using support vector machines (SVM) with CE-MRA data, and the vessel wall region was subsequently delineated. Automatically generated segmentations were quantitatively measured and three observers visually compared the segmentations to manual segmentations performed on T1 w images. Dixon data were used to generate FF and R2* maps. Both manually and automatically generated segmentations of the CA and vessel wall were used to extract compositional data. STATISTICAL TESTS: Two-tailed t-tests were used to examine differences between results generated using manual and automated analyses, and among different configurations of the automated method. Interobserver agreement was assessed with Fleiss' kappa. RESULTS: Automated segmentation of the CA using SVM had a Dice score of 0.89 ± 0.02 and true-positive ratio 0.93 ± 0.03 when compared against ground truth, and median qualitative score of 4/5 when assessed visually by multiple observers. Vessel wall regions of 0.5 and 1 mm yielded compositional information similar to that gained from manual analyses. Using the 0.5 mm vessel wall region, the mean difference was 0.1 ± 2.5% considering FF and 1.1 ± 5.7[1/s] for R2*. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY STAGE: 1. J. Magn. Reson. Imaging 2020;52:710-719.
Asunto(s)
Arterias Carótidas , Placa Aterosclerótica , Arterias Carótidas/diagnóstico por imagen , Hemorragia , Humanos , Imagen por Resonancia Magnética , Placa Aterosclerótica/diagnóstico por imagen , Estudios ProspectivosRESUMEN
PURPOSE: To validate pressure drop measurements using 4D flow MRI-based turbulence production in various shapes of stenotic stenoses. METHODS: In vitro flow phantoms with seven different 3D-printed aortic valve geometries were constructed and scanned with 4D flow MRI with six-directional flow encoding (ICOSA6). The pressure drop through the valve was non-invasively predicted based on the simplified Bernoulli, the extended Bernoulli, the turbulence production, and the shear-scaling methods. Linear regression and agreement of the predictions with invasively measured pressure drop were analyzed. RESULTS: All pressure drop predictions using 4D Flow MRI were linearly correlated to the true pressure drop but resulted in different regression slopes. The regression slope and 95% limits of agreement for the simplified Bernoulli method were 1.35 and 11.99 ± 21.72 mm Hg. The regression slope and 95% limits of agreement for the extended Bernoulli method were 1.02 and 0.74 ± 8.48 mm Hg. The regression slope and 95% limits of agreement for the turbulence production method were 0.89 and 0.96 ± 8.01 mm Hg. The shear-scaling method presented good correlation with an invasively measured pressure drop, but the regression slope varied between 0.36 and 1.00 depending on the shear-scaling coefficient. CONCLUSION: The pressure drop assessment based on the turbulence production method agrees well with the extended Bernoulli method and invasively measured pressure drop in various shapes of the aortic valve. Turbulence-based pressure drop estimation can, as a complement to the conventional Bernoulli method, play a role in the assessment of valve diseases.
Asunto(s)
Estenosis de la Válvula Aórtica/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Algoritmos , Válvula Aórtica/diagnóstico por imagen , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Constricción Patológica , Humanos , Modelos Lineales , Angiografía por Resonancia Magnética/métodos , Modelos Cardiovasculares , Fantasmas de Imagen , Presión , Reproducibilidad de los Resultados , ViscosidadRESUMEN
PURPOSE: To measure the Reynolds stress tensor using 4D flow MRI, and to evaluate its contribution to computed pressure maps. METHODS: A method to assess both velocity and Reynolds stress using 4D flow MRI is presented and evaluated. The Reynolds stress is compared by cross-sectional integrals of the Reynolds stress invariants. Pressure maps are computed using the pressure Poisson equation-both including and neglecting the Reynolds stress. RESULT: Good agreement is seen for Reynolds stress between computational fluid dynamics, simulated MRI, and MRI experiment. The Reynolds stress can significantly influence the computed pressure loss for simulated (eg, -0.52% vs -15.34% error; P < 0.001) and experimental (eg, 306 ± 11 vs 203 ± 6 Pa; P < 0.001) data. A 54% greater pressure loss is seen at the highest experimental flow rate when accounting for Reynolds stress (P < 0.001). CONCLUSION: 4D flow MRI with extended motion-encoding enables quantification of both the velocity and the Reynolds stress tensor. The additional information provided by this method improves the assessment of pressure gradients across a stenosis in the presence of turbulence. Unlike conventional methods, which are only valid if the flow is laminar, the proposed method is valid for both laminar and disturbed flow, a common presentation in diseased vessels. Magn Reson Med 79:1962-1971, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Constricción Patológica/fisiopatología , Humanos , Hidrodinámica , Imagenología Tridimensional , Modelos Cardiovasculares , Movimiento (Física) , Fantasmas de Imagen , Distribución de Poisson , Presión , Reproducibilidad de los Resultados , Estrés MecánicoRESUMEN
PURPOSE: To assess right ventricular (RV) turbulent kinetic energy (TKE) in patients with repaired Tetralogy of Fallot (rToF) and a spectrum of pulmonary regurgitation (PR), as well as to investigate the relationship between these 4D flow markers and RV remodeling. MATERIALS AND METHODS: Seventeen patients with rToF and 10 healthy controls were included in the study. Patients were divided into two groups based on PR fraction: one lower PR fraction group (≤11%) and one higher PR fraction group (>11%). Field strength/sequences: 3D cine phase contrast (4D flow), 2D cine phase contrast (2D flow), and balanced steady-state free precession (bSSFP) at 1.5T. ASSESSMENT: The RV volume was segmented in the morphologic short-axis images and TKE parameters were computed inside the segmented RV volume throughout diastole. Statistical tests: One-way analysis of variance with Bonferroni post-hoc test; unpaired t-test; Pearson correlation coefficients; simple and stepwise multiple regression models; intraclass correlation coefficient (ICC). RESULTS: The higher PR fraction group had more remodeled RVs (140 ± 25 vs. 107 ± 22 [lower PR fraction, P < 0.01] and 93 ± 15 ml/m2 [healthy, P < 0.001] for RV end-diastolic volume index [RVEDVI]) and higher TKE values (5.95 ± 3.15 vs. 2.23 ± 0.81 [lower PR fraction, P < 0.01] and 1.91 ± 0.78 mJ [healthy, P < 0.001] for Peak Total RV TKE). Multiple regression analysis between RVEDVI and 4D/2D flow parameters showed that Peak Total RV TKE was the strongest predictor of RVEDVI (R2 = 0.47, P = 0.002). CONCLUSION: The 4D flow-specific TKE markers showed a slightly stronger association with RV remodeling than conventional 2D flow PR parameters. These results suggest novel hemodynamic aspects of PR in the development of late complications after ToF repair. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1043-1053.
Asunto(s)
Imagen por Resonancia Cinemagnética/métodos , Insuficiencia de la Válvula Pulmonar/complicaciones , Insuficiencia de la Válvula Pulmonar/diagnóstico por imagen , Tetralogía de Fallot/complicaciones , Disfunción Ventricular Derecha/complicaciones , Disfunción Ventricular Derecha/diagnóstico por imagen , Adulto , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Imagenología Tridimensional/métodos , Masculino , Estudios Prospectivos , Insuficiencia de la Válvula Pulmonar/fisiopatología , Riesgo , Tetralogía de Fallot/cirugía , Disfunción Ventricular Derecha/fisiopatologíaRESUMEN
BACKGROUND: Quantification and visualisation of left ventricular (LV) blood flow is afforded by three-dimensional, time resolved phase contrast cardiovascular magnetic resonance (CMR 4D flow). However, few data exist upon the repeatability and variability of these parameters in a healthy population. We aimed to assess the repeatability and variability over time of LV 4D CMR flow measurements. METHODS: Forty five controls underwent CMR 4D flow data acquisition. Of these, 10 underwent a second scan within the same visit (scan-rescan), 25 returned for a second visit (interval scan; median interval 52 days, IQR 28-57 days). The LV-end diastolic volume (EDV) was divided into four flow components: 1) Direct flow: inflow that passes directly to ejection; 2) Retained inflow: inflow that enters and resides within the LV; 3) Delayed ejection flow: starts within the LV and is ejected and 4) Residual volume: blood that resides within the LV for > 2 cardiac cycles. Each flow components' volume was related to the EDV (volume-ratio). The kinetic energy at end-diastole (ED) was measured and divided by the components' volume. RESULTS: The dominant flow component in all 45 controls was the direct flow (volume ratio 38 ± 4%) followed by the residual volume (30 ± 4%), then delayed ejection flow (16 ± 3%) and retained inflow (16 ± 4%). The kinetic energy at ED for each component was direct flow (7.8 ± 3.0 microJ/ml), retained inflow (4.1 ± 2.0 microJ/ml), delayed ejection flow (6.3 ± 2.3 microJ/ml) and the residual volume (1.2 ± 0.5 microJ/ml). The coefficients of variation for the scan-rescan ranged from 2.5%-9.2% for the flow components' volume ratio and between 13.5%-17.7% for the kinetic energy. The interval scan results showed higher coefficients of variation with values from 6.2-16.1% for the flow components' volume ratio and 16.9-29.0% for the kinetic energy of the flow components. CONCLUSION: LV flow components' volume and their associated kinetic energy values are repeatable and stable within a population over time. However, the variability of these measurements in individuals over time is greater than can be attributed to sources of error in the data acquisition and analysis, suggesting that additional physiological factors may influence LV flow measurements.
Asunto(s)
Circulación Coronaria , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Adulto , Anciano , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Femenino , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Factores de Tiempo , Función Ventricular Izquierda , Adulto JovenRESUMEN
PURPOSE: The purpose of this work was to assess the impact of respiratory motion and to compare methods for suppression of respiratory motion artifacts in 4D Flow MRI. METHODS: A numerical 3D aorta phantom was designed based on an aorta velocity field obtained by computational fluid mechanics. Motion-distorted 4D Flow MRI measurements were simulated and several different motion-suppression techniques were evaluated: Gating with fixed acceptance window size, gating with different window sizes in inner and outer k-space, and k-space reordering. Additionally, different spatial resolutions were simulated. RESULTS: Respiratory motion reduced the image quality. All motion-suppression techniques improved the data quality. Flow rate errors of up to 30% without gating could be reduced to less than 2.5% with the most successful motion suppression methods. Weighted gating and gating combined with k-space reordering were advantageous compared with conventional fixed-window gating. Spatial resolutions finer than the amount of accepted motion did not lead to improved results. CONCLUSION: Respiratory motion affects 4D Flow MRI data. Several different motion suppression techniques exist that are capable of reducing the errors associated with respiratory motion. Spatial resolutions finer than the degree of accepted respiratory motion do not result in improved data quality. Magn Reson Med 78:1877-1882, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Técnicas de Imagen Sincronizada Respiratorias/métodos , Aorta/diagnóstico por imagen , Humanos , Modelos Biológicos , Movimiento , Fantasmas de ImagenRESUMEN
PURPOSE: To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. METHODS: Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. RESULTS: Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R2 = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R2 = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. CONCLUSION: Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Arterias/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Modelos Cardiovasculares , Arterias/anatomía & histología , Simulación por Computador , Humanos , Hidrodinámica , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resistencia al Corte/fisiología , Estrés MecánicoRESUMEN
PURPOSE: The aim of this work was to quantify the extent of lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in atherosclerotic plaques. METHODS: Patients scheduled for carotid endarterectomy underwent four-point Dixon and T1-weighted magnetic resonance imaging (MRI) at 3 Tesla. Fat and R2* maps were generated from the Dixon sequence at the acquired spatial resolution of 0.60 × 0.60 × 0.70 mm voxel size. MRI and three-dimensional (3D) histology volumes of plaques were registered. The registration matrix was applied to segmentations denoting LRNC and IPH in 3D histology to split plaque volumes in regions with and without LRNC and IPH. RESULTS: Five patients were included. Regarding volumes of LRNC identified by 3D histology, the average fat fraction by MRI was significantly higher inside LRNC than outside: 12.64 ± 0.2737% versus 9.294 ± 0.1762% (mean ± standard error of the mean [SEM]; P < 0.001). The same was true for IPH identified by 3D histology, R2* inside versus outside IPH was: 71.81 ± 1.276 s-1 versus 56.94 ± 0.9095 s-1 (mean ± SEM; P < 0.001). There was a strong correlation between the cumulative fat and the volume of LRNC from 3D histology (R2 = 0.92) as well as between cumulative R2* and IPH (R2 = 0.94). CONCLUSION: Quantitative mapping of fat and R2* from Dixon MRI reliably quantifies the extent of LRNC and IPH. Magn Reson Med 78:285-296, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Hemorragia/metabolismo , Hemorragia/patología , Imagen por Resonancia Magnética/métodos , Tejido Adiposo/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Hemorragia/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Modelos Estadísticos , Imagen Molecular/métodos , Necrosis/diagnóstico por imagen , Necrosis/metabolismo , Necrosis/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por ComputadorRESUMEN
PURPOSE: To assess how 4D flow MRI-based pressure and energy loss estimates correspond to net transstenotic pressure gradients (TPGnet) and their dependence on spatial resolution. METHODS: Numerical velocity data of stenotic flow were obtained from computational fluid dynamics (CFD) simulations in geometries with varying stenosis degrees, poststenotic diameters and flow rates. MRI measurements were simulated at different spatial resolutions. The simplified and extended Bernoulli equations, Pressure-Poisson equation (PPE), and integration of turbulent kinetic energy (TKE) and viscous dissipation were compared against the true TPGnet . RESULTS: The simplified Bernoulli equation overestimated the true TPGnet (8.74 ± 0.67 versus 6.76 ± 0.54 mmHg). The extended Bernoulli equation performed better (6.57 ± 0.53 mmHg), although errors remained at low TPGnet . TPGnet estimations using the PPE were always close to zero. Total TKE and viscous dissipation correlated strongly with TPGnet for each geometry (r(2) > 0.93) and moderately considering all geometries (r(2) = 0.756 and r(2) = 0.776, respectively). TKE estimates were accurate and minorly impacted by resolution. Viscous dissipation was overall underestimated and resolution dependent. CONCLUSION: Several parameters overestimate or are not linearly related to TPGnet and/or depend on spatial resolution. Considering idealized axisymmetric geometries and in absence of noise, TPGnet was best estimated using the extended Bernoulli equation. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Asunto(s)
Coartación Aórtica/diagnóstico por imagen , Simulación por Computador , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Válvula Aórtica/diagnóstico por imagen , Humanos , Fantasmas de ImagenRESUMEN
PURPOSE: To develop and evaluate retrospectively gated spiral readout four-dimensional (4D) flow MRI for intracardiac flow analysis. METHODS: Retrospectively gated spiral 4D flow MRI was implemented on a 1.5-tesla scanner. The spiral sequence was compared against conventional Cartesian 4D flow (SENSE [sensitivity encoding] 2) in seven healthy volunteers and three patients (only spiral). In addition to comparing flow values, linear regression was used to assess internal consistency of aortic versus pulmonary net volume flows and left ventricular inflow versus outflow using quantitative pathlines analysis. RESULTS: Total scan time with spiral 4D flow was 44% ± 6% of the Cartesian counterpart (13 ± 3 vs. 31 ± 7 min). Aortic versus pulmonary flow correlated strongly for the spiral sequence (P < 0.05, slope = 1.03, R(2) = 0.88, N = 10), whereas the linear relationship for the Cartesian sequence was not significant (P = 0.06, N = 7). Pathlines analysis indicated good data quality for the spiral (P < 0.05, slope = 1.02, R(2) = 0.90, N = 10) and Cartesian sequence (P < 0.05, slope = 1.10, R(2) = 0.93, N = 7). Spiral and Cartesian peak flow rate (P < 0.05, slope = 0.96, R(2) = 0.72, N = 14), peak velocity (P < 0.05, slope = 1.00, R(2) = 0.81, N = 14), and pathlines flow components (P < 0.05, slope = 1.04, R(2) = 0.87, N = 28) correlated well. CONCLUSION: Retrospectively gated spiral 4D flow MRI permits more than two-fold reduction in scan time compared to conventional Cartesian 4D flow MRI, while maintaining similar data quality.