Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 33(2): 434-457, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35244150

RESUMEN

The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient "AChE-clumping," disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial "mature" pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.


Asunto(s)
Ganglios Basales , Neostriado , Animales , Humanos , Encéfalo , Feto , Inmunohistoquímica , Acetilcolinesterasa , Mamíferos
2.
J Anat ; 235(3): 651-669, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435943

RESUMEN

Von Economo neurons (VENs) are modified pyramidal neurons characterized by an extremely elongated rod-shaped soma. They are abundant in layer V of the anterior cingulate cortex (ACC) and fronto-insular cortex (FI) of the human brain, and have long been described as a human-specific neuron type. Recently, VENs have been reported in the ACC of apes and the FI of macaque monkeys. The first description of the somato-dendritic morphology of VENs in the FI by Cajal in 1899 (Textura del Sistema Nervioso del Hombre y de los Vertebrados, Tomo II. Madrid: Nicolas Moya) strongly suggested that they were a unique neuron subtype with specific morphological features. It is surprising that a clarification of this extremely important observation has not yet been attempted, especially as possible misidentification of other oval or fusiform cells as VENs has become relevant in many recently published studies. Here, we analyzed sections of Brodmann area 24 (ACC) stained with rapid Golgi and Golgi-Cox in five adult human specimens, and confirmed Cajal's observations. In addition, we established a comprehensive morphological description of VENs. VENs have a distinct somato-dendritic morphology that allows their clear distinction from other modified pyramidal neurons. We established that VENs have a perpendicularly oriented, stick-shaped core part consisting of the cell body and two thick extensions - an apical and basal stem. The perpendicular length of the core part was 150-250 µm and the thickness was 10-21 µm. The core part was characterized by a lack of clear demarcation between the cell body and the two extensions. Numerous thin, spiny and horizontally oriented side dendrites arose from the cell body. The basal extension of the core part typically ended by giving numerous smaller dendrites with a brush-like branching pattern. The apical extension had a topology typical for apical dendrites of pyramidal neurons. The dendrites arising from the core part had a high dendritic spine density. The most distinct feature of VENs was the distant origin site of the axon, which arose from the ending of the basal extension, often having a common origin with a dendrite. Quantitative analysis found that VENs could be divided into two groups based on total dendritic length - small VENs with a peak total dendritic length of 1500-2500 µm and large VENs with a peak total dendritic length of 5000-6000 µm. Comparative morphological analysis of VENs and other oval and fusiform modified pyramidal neurons showed that on Nissl sections small VENs might be difficult to identify, and that oval and fusiform neurons could be misidentified as VENs. Our analysis of Golgi slides of Brodmann area 9 from a total of 32 adult human subjects revealed only one cell resembling VEN morphology. Thus, our data show that the numerous recent reports on the presence of VENs in non-primates in other layers and regions of the cortex need further confirmation by showing the dendritic and axonal morphology of these cells. In conclusion, our study provides a foundation for further comprehensive morphological and functional studies on VENs between different species.


Asunto(s)
Giro del Cíngulo/citología , Células Piramidales/citología , Adolescente , Adulto , Humanos , Masculino , Persona de Mediana Edad , Coloración y Etiquetado
3.
Acta Clin Croat ; 58(Suppl 1): 35-42, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31741557

RESUMEN

The whole human body receives rich sensory innervation with only one exception and that is the brain tissue. The orofacial region is hence no exception. The head region consequently receives a rich network of sensory nerves making it special because the two types of sensory fibres, visceral and somatic overlap, especially in the pharynx. Also, different pain syndromes that affect this region are rather specific in comparison to their presentation in other body regions. With this review article we wanted to show the detailed anatomy of the peripheral sensory pathways, because of its importance in everyday body functions (eating, drinking, speech) as well as the importance it has in pathological conditions (pain syndromes), in diagnostics and regional analgesia and anaesthesia.


Asunto(s)
Cara/inervación , Nervio Glosofaríngeo/anatomía & histología , Faringe/inervación , Nervio Trigémino/anatomía & histología , Vías Aferentes , Humanos , Músculo Esquelético/inervación , Dolor/etiología , Nervio Vago/anatomía & histología
4.
Croat Med J ; 59(5): 189-202, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30394011

RESUMEN

AIM: To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS: We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS: Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long "dormant" period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION: Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Cognición/fisiología , Dendritas/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proliferación Celular , Niño , Preescolar , Recolección de Datos , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Neuronas/fisiología
5.
J Perinatol ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145989

RESUMEN

OBJECTIVE: Our goal was to improve placement success rates for peripheral arterial line (PAL) placements by introducing an ultrasound-guided (USg) approach. Our aim was to maintain success rates over 70% within 18 months. STUDY DESIGN: Interventions included development of a training curriculum, and procedure standardization. Among 302 patients, 115 underwent USg catheter placement; the traditional method was used in 187 patients. Outcome measures were first-attempt and overall success rates. Process measures were proportion of PALs placed under US guidance, trainer availability, and trainee sign-off. Line complications were balancing measures. Statistical process control charts were used to monitor metrics. RESULTS: Sustained improvement was seen with the USg approach. The USg approach had first and overall attempt success by the trainers (i.e., independent users) of 83.7% (77/92) and 96.5% (111/115), compared to 50.3% (82/163) and 73.8% (138/187) with the traditional approach. CONCLUSION: Introducing the USg approach had a significant impact on PAL placement success in neonatal patients.

6.
Front Psychiatry ; 10: 122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923504

RESUMEN

The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.

7.
Front Neuroanat ; 8: 103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309344

RESUMEN

In this article we first point at the expansion of associative cortical areas in primates, as well as at the intrinsic changes in the structure of the cortical column. There is a huge increase in proportion of glutamatergic cortical projecting neurons located in the upper cortical layers (II/III). Inside this group, a novel class of associative neurons becomes recognized for its growing necessity in both inter-areal and intra-areal columnar integration. Equally important to the changes in glutamatergic population, we found that literature data suggest a 50% increase in the proportion of neocortical GABAergic neurons between primates and rodents. This seems to be a result of increase in proportion of calretinin interneurons in layers II/III, population which in associative areas represents 15% of all neurons forming those layers. Evaluating data about functional properties of their connectivity we hypothesize that such an increase in proportion of calretinin interneurons might lead to supra-linear growth in memory capacity of the associative neocortical network. An open question is whether there are some new calretinin interneuron subtypes, which might substantially change micro-circuitry structure of the primate cerebral cortex.

8.
Front Neuroanat ; 8: 50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25018702

RESUMEN

The vast majority of cortical GABAergic neurons can be defined by parvalbumin, somatostatin or calretinin expression. In most mammalians, parvalbumin and somatostatin interneurons have constant proportions, each representing 5-7% of the total neuron number. In contrast, there is a threefold increase in the proportion of calretinin interneurons, which do not exceed 4% in rodents and reach 12% in higher order areas of primate cerebral cortex. In rodents, almost all parvalbumin and somatostatin interneurons originate from the medial part of the subpallial proliferative structure, the ganglionic eminence (GE), while almost all calretinin interneurons originate from its caudal part. The spatial pattern of cortical GABAergic neurons origin from the GE is preserved in the monkey and human brain. However, it could be expected that the evolution is changing developmental rules to enable considerable expansion of calretinin interneuron population. During the early fetal period in primates, cortical GABAergic neurons are almost entirely generated in the subpallium, as in rodents. Already at that time, the primate caudal ganglionic eminence (CGE) shows a relative increase in size and production of calretinin interneurons. During the second trimester of gestation, that is the main neurogenetic stage in primates without clear correlates found in rodents, the pallial production of cortical GABAergic neurons together with the extended persistence of the GE is observed. We propose that the CGE could be the main source of calretinin interneurons for the posterior and lateral cortical regions, but not for the frontal cortex. The associative granular frontal cortex represents around one third of the cortical surface and contains almost half of cortical calretinin interneurons. The majority of calretinin interneurons destined for the frontal cortex could be generated in the pallium, especially in the newly evolved outer subventricular zone that becomes the main pool of cortical progenitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA