RESUMEN
RATIONALE: Glycolipids play important roles in many physiological processes - despite their commonly low abundance. This study summarizes selected data on the (glyco)lipid composition of sperm from different fish species. METHODS: Lipid extraction of fish sperm was performed according to the procedure by Bligh and Dyer. The lipid composition of the organic extracts was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization ion trap (ESI-IT)MS coupled to high-performance thin-layer chromatography (HPTLC). RESULTS: It was shown that sperm from carp, northern pike, rainbow trout and burbot contain high amounts of neutral and acidic glycosphingolipids as well as sulfoglycolipids. These particular lipids are presumably involved in reproduction requirements. CONCLUSIONS: Phospholipids and glycolipids in crude lipid extracts can be analyzed in parallel by MS coupled to TLC. The direct application of tandem mass spectrometry (MS/MS) helps to elucidate the glycolipid structure. Thus, compositional analysis can be performed very rapidly.
Asunto(s)
Cromatografía en Capa Delgada/métodos , Peces/metabolismo , Glucolípidos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espermatozoides/química , Animales , Cromatografía Líquida de Alta Presión , Agua Dulce , Glucolípidos/análisis , Glucolípidos/química , MasculinoRESUMEN
Sturgeon spermatozoa are unique for their sustained motility. We investigated the relative importance of bioenergetic pathways in the energy supply of Siberian sturgeon Acipenser baerii spermatozoa during motile and immotile states. Spermatozoon motility and oxygen consumption rate (OCR) were analysed following exposure to inhibitors of oxidative phosphorylation (sodium azide, NaN3 ), glycolysis (2-deoxy-D-glucose, DOG) and ß-oxidation of fatty acids (sodium fluoride, NaF), and to an uncoupler of oxidative phosphorylation (carbonyl cyanide m-chlorophenyl hydrazine, CCCP). No significant difference in curvilinear velocity was observed after addition of these reagents to activation medium (AM) or nonactivation medium (NAM) for incubation. Incubation of spermatozoa in NAM containing CCCP or NaN3 resulted in significantly decreased motility duration compared to controls. The OCR of sturgeon spermatozoa in AM (11.9 ± 1.4 nmol O2 min-1 (109 spz)-1 ) was significantly higher than in NAM (8.2 ± 1.5 nmol O2 min-1 (109 spz)-1 ). The OCR significantly declined with addition of NaN3 to AM and NAM. No significant difference in motility parameters or OCR was observed with NaF or DOG. These results suggest active oxidative phosphorylation in both immotile and motile spermatozoa. Nevertheless, mitochondrial respiration occurring during motility is not sufficient to meet the high energy demands, and the energy required for sustained motility of Siberian sturgeon spermatozoa is derived from adenosine triphosphate accumulated during the quiescent state.
Asunto(s)
Peces/fisiología , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Adenosina Trifosfato/metabolismo , Animales , Metabolismo Energético , Masculino , Mitocondrias/metabolismo , Consumo de OxígenoRESUMEN
The importance of reactive oxygen species and the antioxidant system in sperm biology has been recognized for different bony fishes but nothing is known in this regard for chondrichthyans. For the first time for cartilaginous fishes, the enzymatic antioxidant system was shown herein to be present in both fractions of sperm (spermatozoa and seminal fluid) collected from two different places (seminal vesicle and cloaca). In internally fertilizing freshwater ocellate river stingray, Potamotrygon motoro, the activity of superoxide dismutase and glutathione peroxidase was not changed upon sperm transition from the seminal vesicle to the cloaca. The activity of catalase was significantly increased for both sperm fractions at transition from the seminal vesicle to the cloaca (1.6 times for spermatozoa and 1.9 times for seminal fluid). The role of the sperm antioxidant system for different aspects of internal fertilization is discussed. The presented results are the initiatory step in uncovering the biochemical events of internal reproduction in Chondrichthyes.
Asunto(s)
Catalasa/metabolismo , Cloaca/enzimología , Elasmobranquios/metabolismo , Glutatión Peroxidasa/metabolismo , Vesículas Seminales/enzimología , Espermatozoides/enzimología , Superóxido Dismutasa/metabolismo , Animales , Fertilización , Masculino , Semen/enzimologíaRESUMEN
Influence of in vitro temperature on sperm antioxidant enzyme activity, thiobarbituric acid-reactive substance (TBARS) content and motility parameters was evaluated in sterlet Acipenser ruthenus and rainbow trout Oncorhynchus mykiss. Sperm activation was conducted at 4, 14 and 24 °C in both species. Duration of motility was significantly longer at 4 °C than at 14 and 24 °C in both species. At 60 s post-activation, the velocity of sterlet spermatozoa was highest at 24 °C. This trend continued to 420 s post-activation. In rainbow trout, at 10 s post-activation, the highest velocity was observed at 14 °C. Significantly higher catalase activity was seen at 4 °C in both species. No significant difference in spermatozoon superoxide dismutase activity among temperatures was observed. In sterlet, TBARS content was significantly higher at 24 °C compared to other temperatures, but, in rainbow trout, it was highest at 4 °C. The results presume species-specific level of antioxidant enzyme activity and TBARS content at studied temperatures.
Asunto(s)
Antioxidantes/metabolismo , Oncorhynchus mykiss/fisiología , Motilidad Espermática , Espermatozoides/enzimología , Temperatura , Animales , Peces/fisiología , Peroxidación de Lípido , Masculino , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
The effect of temperature on Cyprinus carpio spermatozoa in vitro was investigated with spermatozoa activated at 4, 14, and 24°C. At 30s post-activation, motility rate was significantly higher at 4°C compared to 14 and 24°C, whereas highest swimming velocity was observed at 14°C. The thiobarbituric acid-reactive substance (TBARS) content was significantly higher at 14°C and 24°C than at 4°C in motile spermatozoa. No significant differences in catalase and superoxide dismutase activity relative to temperature were observed. This study provides new information regarding effect of temperature on lipid peroxidation intensity and spermatozoon motility parameters in carp. The elevation of TBARS seen at higher temperatures could be due to inadequate capacity of antioxidant enzymes to protect the cell against the detrimental effects of oxidative stress induced by higher temperatures.
Asunto(s)
Carpas/fisiología , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Peroxidación de Lípido , Masculino , Estrés Oxidativo , Motilidad Espermática , Espermatozoides/citología , Espermatozoides/enzimología , Espermatozoides/metabolismo , Superóxido Dismutasa/metabolismo , Temperatura , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
The role of the seminal fluid antioxidant system in protection against damage to spermatozoa during in vitro sperm storage is unclear. This study investigated the effect of in vitro storage of sterlet Acipenser ruthenus spermatozoa together with seminal fluid for 36 h at 4 °C on spermatozoon motility rate and curvilinear velocity, thiobarbituric acid reactive substance level, and components of enzyme and non-enzyme antioxidant system (superoxide dismutase and catalase activity and uric acid concentration) in seminal fluid. Spermatozoon motility parameters after sperm storage were significantly decreased, while the level of thiobarbituric acid reactive substances, activity of superoxide dismutase and catalase, and uric acid concentration did not change. Our findings suggest that the antioxidant system of sterlet seminal fluid is effective in preventing oxidative stress during short-term sperm storage and prompt future investigations of changes in spermatozoon homeostasis and in spermatozoon plasma membrane structure which are other possible reasons of spermatozoon motility deterioration upon sperm storage.
Asunto(s)
Peces/fisiología , Semen/metabolismo , Animales , Catalasa/metabolismo , Masculino , Estrés Oxidativo , Motilidad Espermática , Espermatozoides , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido ÚricoRESUMEN
In sturgeon, the acquisition of the potential for motility activation called spermatozoon maturation takes place outside testes. This process can be accomplished in vitro by pre-incubation of immature testicular spermatozoa in seminal fluid collected from fully mature Wolffian duct sperm. Addition of trypsin inhibitor to the pre-incubation medium disrupts spermatozoon maturation. There are no available data for the role of proteolysis regulators in fish spermatozoon maturation, while their role is recognized in mammalian sperm maturation. The present study evaluated the involvement of seminal fluid proteases and anti-proteolytic activity in the sterlet spermatozoon maturation process. Casein and gelatin zymography and quantification of amidase and anti-proteolytic activity were conducted in sturgeon seminal fluid from Wolffian duct sperm and seminal fluid from testicular sperm, along with spermatozoon extracts from Wolffian duct spermatozoa, testicular spermatozoa, and testicular spermatozoa after in vitro maturation. We did not find significant differences in proteolytic profiles of seminal fluids from Wolffian duct sperm and ones from testicular sperm. Zymography revealed differences in spermatozoon extracts: Wolffian duct spermatozoon extracts were characterized by the presence of a broad proteolytic band ranging from 48 to 41 kDa, while testicular spermatozoon extracts did not show such activity until after in vitro maturation. The differences in amidase activity coincided with these results. It may not be the levels of proteolytic and anti-proteolytic activity per se, but the alterations in their interactions triggering a cascade of signaling events, that is crucial to the maturation process.
Asunto(s)
Peces/fisiología , Maduración del Esperma , Espermatozoides/fisiología , Amidohidrolasas/metabolismo , Animales , Masculino , Proteolisis , Motilidad Espermática , Testículo/citología , Conductos Mesonéfricos/citologíaRESUMEN
Oxidative stress is a possible source of spermatozoa function deterioration. Seminal fluid (SF) protects spermatozoa against reactive oxygen species (ROS) attack during development in testes and transit through the reproductive tract. Spermatozoa curvilinear velocity and percent of motile cells as well as changes in thiobarbituric acid-reactive substance (TBARS) content, superoxide dismutase, and catalase activity, and uric acid concentration in SF were evaluated in sterlet sperm collected from testes 24 h after hormone induction of spermiation and from Wolffian ducts at 12, 24, 36, and 60 h after hormone injection (HI). While testicular spermatozoa motility was not initiated in activating medium, Wolffian duct sperm showed low motility at 12 h, significant increase at 24 and 36 h, and decrease at 60 h. Testicular SF was characterized by the highest level of TBARS and activity of studied enzymes compared with SF from Wolffian duct sperm at 24 h post-HI. In fluid from Wolffian duct sperm, a significant increase in TBARS content was shown at 36-60 h post-HI. In contrast to testicular SF, in SF from Wolffian duct sperm, this increase was not counterbalanced by changes in the studied variables of antioxidant system. This may be the source of the observed decrease in spermatozoa motility parameters 60 h post-HI. The results may confirm a dual role of ROS in fish sperm physiology. The data with respect to decrease in sturgeon spermatozoa motility parameters at 60 h post-HI should be taken into account in artificial sturgeon propagation.
Asunto(s)
Antioxidantes/metabolismo , Peces/fisiología , Semen/metabolismo , Conductos Mesonéfricos/metabolismo , Animales , Masculino , Recuento de Espermatozoides , Espermatozoides/citología , Espermatozoides/fisiología , Sustancias Reactivas al Ácido Tiobarbitúrico/química , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismoRESUMEN
Fish speciation was accompanied by changes in the urogenital system anatomy. In evolutionarily modern Teleostei, male reproductive tracts are fully separated from the excretory system, while in evolutionarily ancient Chondrostei and Holostei, the excretory and reproductive tracts are not separated. Sturgeon post-testicular sperm maturation (PTSM) occurring as a result of sperm/urine mixing is phenomenologically well described, while, in holosteans, functional intimacy of seminal ducts with kidney ducts and the existence of PTSM still need to be addressed. In Lepisosteus platostomus (Holostei), sperm samples were collected from testes (TS), efferent ducts (EDS), and Wolffian ducts (WDS). While WDS was motile, no motility was found in TS and EDS. The existence of PTSM was checked by in vitro PTSM procedure. After TS and EDS incubation in seminal fluid from WDS, no more than 5% motile spermatozoa were observed in TS, whereas in EDS the motility percentage was up to 75%. Experimental dyeing of urogenital ducts in gars and sturgeons revealed some differences in the interconnection between sperm ducts and kidneys. It is concluded that post-testicular sperm maturation occurs in gars and suggests that infraclass Holostei occupies an intermediate evolutionary position between Teleostei and Chondrostei in the anatomical arrangement of the urogenital system.
Asunto(s)
Maduración del Esperma , Testículo , Animales , Masculino , Semen , Espermatozoides , Genitales Masculinos , Peces/anatomía & histología , Motilidad EspermáticaRESUMEN
Regarding the sperm of cold-water fish, the contributions of different bioenergetic pathways, including mitochondrial respiration, to energy production at the spawning temperature and its adaptation at the maximum critical temperature (CTmax) are unclear. The roles of glycolysis, fatty acid oxidation, oxidative phosphorylation (OXPHOS) at 4 °C, and OXPHOS at 15 °C for energy production in burbot (Lota lota) spermatozoa were studied by motility and the oxygen consumption rate (OCR) (with and without pathway inhibitors and the OXPHOS uncoupler). At both temperatures, the effects of the inhibitors and the uncoupler on the motility duration, curvilinear velocity, and track linearity were insignificant; in addition, the OCRs in activation and non-activation media differed insignificantly and were not enhanced after uncoupler treatment. After inhibitor treatment in both media, OXPHOS was insignificantly different at the 2, 30, and 60 s time points at 4 °C but was reduced significantly at the 30 and 60 s time points after treatment with sodium azide at 15 °C. In conclusion, for burbot sperm at both the spawning temperature and the CTmax, the energy synthesized via OXPHOS during motility was insufficient. Therefore, the majority of the energy required to sustain motility was derived from pre-accumulated energy produced and stored during the quiescent state of the spermatozoa.
RESUMEN
Sturgeon sperm maturation occurs outside the testes during the transit of testicular spermatozoa (TS) through the kidneys and the Wolffian ducts. A method of in vitro TS maturation in sterlet Acipenser ruthenus was used to investigate the effects of temperature and hormonal stimulation of spermiation on the ability of TS to complete this process. Spermatozoa motility parameters after in vitro maturation of testicular sperm, concentrations of sex steroid hormones and testis morphology were studied in three groups of sterlet: (1) after overwintering in ponds (OW), (2) adapted to spawning temperature (ST), and (3) adapted to spawning temperature with hormonal induction of spermiation (ST-HI). Blood plasma concentrations of testosterone, 11-ketotestosterone and 17,20ß-dihydroxy-pregnenolone increased significantly after hormonal induction of spermiation (group ST-HI). In all groups, TS were not motile. After in vitro sperm maturation, motility was up to 60% only in group ST-HI. The data suggest that the ability of TS to be matured in vitro was not related to the environmental temperature, while hormonal stimulation of spermiation during the spawning season was an absolute requirement for optimal in vitro maturation.
RESUMEN
The lipid composition of sperm membranes is crucial for fertilization and differs among species. As the evolution of internal fertilization modes in fishes is not understood, a comparative study of the sperm lipid composition in freshwater representatives of externally and internally fertilizing fishes is needed for a better understanding of taxa-specific relationships between the lipid composition of the sperm membrane and the sperm physiology. The lipidomes of spermatozoa from stingray, a representative of cartilaginous fishes possessing internal fertilization, and sterlet, a representative of chondrostean fishes with external fertilization, have been studied by means of nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), electrospray MS, gas chromatography-(GC) MS, and thin-layer chromatography (TLC). NMR experiments revealed higher cholesterol content and the presence of phosphatidylserine in stingray compared to sterlet sperm. Unknown MS signals could be assigned to different glycosphingolipids in sterlet (neutral glycosphingolipid Gal-Cer(d18:1/16:0)) and stingray (acidic glycosphingolipid sulpho-Gal-Cer(d18:1/16:0)). Free fatty acids in sterlet sperm indicate internal energy storage. GC-MS experiments indicated a significant amount of adrenic acid, but only a low amount of docosahexaenoic acid in stingray sperm. In a nutshell, this study provides novel data on sperm lipid composition for freshwater stingray and sterlet possessing different modes of fertilization.
Asunto(s)
Fertilización/fisiología , Peces/fisiología , Lípidos/química , Espermatozoides/química , Animales , Cromatografía en Capa Delgada , Ácidos Docosahexaenoicos/química , Cromatografía de Gases y Espectrometría de Masas , Glicoesfingolípidos/química , Lipidómica , Espectroscopía de Resonancia Magnética , Masculino , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Morphology of the urogenital system has evolved during fish speciation. Chondrostei (sturgeons and paddlefishes) possess an excretory system which is called "primitive" in that the sperm ducts enter the kidneys and share the excretory ducts where sperm is mixed with urine before it is released into the spawning environment. Further, in this group of fishes there are also physiological characteristics which are associated with these anatomical features where the mixing of sperm and urine is a prerequisite for the final sperm maturation rather than contamination. In the Holostei (gars and bowfins) which are closely related to the Chondrostei, sperm also naturally mixed with urine, but the physiological role of such mixing for sperm biology has not been described. In contrast, urinary and sperm ducts in the more evolved Teleostei are completely separate, and sperm and urine are not mixed before being released during spawning. Thus, urine constitutes an inappropriate environment which can be a source of problems when sperm is collected during fisheries practices. In this review, the consequences of such divergent conditions in the urogenital anatomy will be considered in relation to general features of fish sperm biology and in relation to aquaculture and fisheries practices.
Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Espermatozoides/fisiología , Sistema Urogenital/anatomía & histología , Animales , MasculinoRESUMEN
All extant groups of Elasmobranches have internal fertilization and the structure of the male reproductive organs is very specific: sperm passes from the internal organs via the cloaca, but the male copulating organ (clasper) is distant from the cloaca. This suggests that sperm can contact the surrounding medium before fertilization. Because of this involvement with the environment, external signaling in sperm motility activation could occur in these species even though their fertilization mode is internal. In this case, spermatozoa of Elasmobranches should hypothetically possess a specific structure and membrane lipid composition which supports physiological functions of the sperm associated with environmental tonicity changes occurring at fertilization. Additionally, sperm motility properties in these taxa are poorly understood. The current study examined sperm lipid composition and motility under different environmental conditions for the ocellate river stingray, Potamotrygon motoro, an endemic South America freshwater species. Sperm samples were collected from six mature males during the natural spawning period. Sperm motility was examined in seminal fluid and fresh water by light video microscopy. Helical flagellar motion was observed in seminal fluid and resulted in spermatozoon progression; however, when diluted in fresh water, spermatozoa were immotile and had compromised structure. Lipid class and fatty acid (FA) composition of spermatozoa was analyzed by thin layer and gas chromatography. Spermatozoa FAs consisted of 33⯱â¯1% saturated FAs, 28⯱â¯1% monounsaturated FAs (MUFAs), and 41⯱â¯1% polyunsaturated FAs (PUFAs), and a high content of n-6 FAs (32⯱â¯2%) was measured. These results allowed us to conclude that sperm transfer from P. motoro male into female should occur without coming into contact with the hypotonic environment so as to preserve potent motility. In addition, this unusual reproductive strategy is associated with specific spermatozoa structure and lipid composition. Low level of docosahexaenoic acid and relatively low PUFA/MUFA ratio probably account for the relatively low fluidity of freshwater stingray membrane and can be the main reason for its low tolerance to hypotonicity.
Asunto(s)
Lípidos/química , Rajidae/fisiología , Motilidad Espermática/fisiología , Animales , Masculino , Análisis de Semen/veterinariaRESUMEN
In fish, sperm quality is frequently associated with sperm motility variables. The response of sperm motility to different temperatures varies among species and plasma membrane lipid composition may contribute to variations in findings in previous research. In the present study, sperm motility and lipid composition were analysed between motile or immotile carp Cyprinus carpio sperm at different in vitro temperatures (4, 14 and 24°C). The duration of the period over which sperm motility is sustained was longer at 4°C compared with 14 and 24°C; while sperm velocity was greatest at 24°C. Motile sperm had lesser proportions of 18:3 (n-3) and 22:6 (n-3) fatty acids at 24°C relative to immotile sperm. There was no difference in fatty acid composition of motile and immotile sperm at 4 and 14°C. The total phospholipid content was less in motile than in immotile sperm at 24°C. At 24°C, phosphatidylcholine and phosphatidylserine proportions were less in motile than immotile sperm. It is concluded that lipid composition of motile carp sperm is affected by temperature, with greater temperatures associated with reduced lipid content, elevation of sperm curvilinear velocity and a decreased duration of the period over which motility is sustained.
Asunto(s)
Carpas/fisiología , Lípidos/química , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Temperatura , Animales , Masculino , Espermatozoides/químicaRESUMEN
The morphology of the reproductive system of acipenseriform fishes is quite different from that of teleostean species, but an associated unique physiological difference in male sturgeons was not discovered until recently; sperm of sturgeons passes through the kidneys then via Wolffian ducts into the environment rather that emptying directly through seminal ducts. The mixing of sperm with excretory products has been found to be a requisite for the capacity to be activated (maturation step) instead of being deleterious. In the current review we summarize results of studies performed in our laboratory on physiological processes involved in sturgeon sperm maturation, namely changes in: 1) ionic environment; 2) sensitivity of spermatozoa to calcium ions (Ca2+); 3) antioxidant enzymes and proteolytic activities; and 4) content in macroergic phosphates arising during this maturation process. We also discuss taxa-specific aspects of sturgeon sperm maturation in relation to hormonal regulation of spermiation, and the unusual features of sturgeon sperm maturation relative to using testicular sturgeon sperm in aquaculture.
Asunto(s)
Peces/fisiología , Maduración del Esperma/fisiología , Espermatozoides/fisiología , Animales , Genitales Masculinos/anatomía & histología , Genitales Masculinos/fisiología , MasculinoRESUMEN
As spermatozoon motility duration differs significantly among fish species, the mechanism of ATP generation-regeneration and its distribution along the flagellum may be species-dependent. The present study compared the role of creatine kinase (CK) with that of adenylate kinase (AK) in ATP regeneration during motility of demembranated spermatozoa of taxonomically distant fish species, sterlet, and common carp, allowing investigation for the presence of the creatine-phosphocreatine (PCr) shuttle in sterlet spermatozoa. The flagellar beat frequency of demembranated spermatozoa was measured in reactivating media in the presence or absence of ATP, ADP, PCr, and CK and AK inhibitors. After demembranation, AK, CK, and total ATPase activity was measured in spermatozoon extracts. Beat frequency of demembranated spermatozoa was found to be positively correlated with ATP levels in reactivating medium and to reach a plateau at 0.8 mM and 0.6 mM ATP for carp and sterlet, respectively. It was shown for the first time that sterlet axonemal dynein ATPases have a higher affinity for ATP than do those of carp. Supplementation of reactivating medium with ADP and PCr without ATP resulted in beat frequencies comparable to that measured with 0.3 to 0.5-mM ATP for both studied species. The presence of the PCr-CK phosphagen system and its essential role in ATP regeneration were first confirmed for sturgeon spermatozoa. The inhibition of CK exerted a high impact on spermatozoon energy supply in both species, whereas the inhibition of AK was more pronounced in sterlet than in carp. This was confirmed by the quantification of enzyme activity in spermatozoon extracts. We concluded that spermatozoa of these taxonomically distant species use similar systems to supply energy for flagella motility, but with different efficacy.
Asunto(s)
Metabolismo Energético/fisiología , Peces/fisiología , Motilidad Espermática/fisiología , Espermatozoides/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Peces/genética , Masculino , Especificidad de la Especie , Motilidad Espermática/genéticaRESUMEN
For successful fertilization, spermatozoa must access, bind, and penetrate an egg, processes for which activation of spermatozoa motility is a prerequisite. Fish spermatozoa are stored in seminal plasma where they are immotile during transit through the genital tract of most externally fertilizing teleosts and chondrosteans. Under natural conditions, motility is induced immediately following release of spermatozoa from the male genital tract into the aqueous environment. The nature of an external trigger for the initiation of motility is highly dependent on the aquatic environment (fresh or salt water) and the species' reproductive behavior. Triggering signals include osmotic pressure, ionic and gaseous components of external media and, in some cases, egg-derived substances. Extensive study of environmental factors influencing fish spermatozoa motility has led to the proposal of several mechanisms of activation in freshwater and marine fish. However, the signal transduction pathways initiated by these mechanisms remain clear. This review presents the current knowledge with respect to (1) membrane reception of the activation signal and its transduction through the spermatozoa plasma membrane via the external membrane components, ion channels, and aquaporins; (2) cytoplasmic trafficking of the activation signal; (3) final steps of the signaling, including signal transduction to the axonemal machinery, and activation of axonemal dyneins and regulation of their activity; and (4) pathways supplying energy for flagellar motility.
Asunto(s)
Peces/fisiología , Modelos Biológicos , Transducción de Señal , Motilidad Espermática , Cola del Espermatozoide/fisiología , Espermatozoides/fisiología , Animales , Membrana Celular/metabolismo , Metabolismo Energético , Masculino , Presión Osmótica , Interacciones Espermatozoide-Óvulo , Calidad del AguaRESUMEN
The aim of the study was to examine sperm maturation in sturgeon and to establish the localization of the maturation. We demonstrated that sperm maturation occurs in sturgeon outside the testes via dilution of sperm by urine. The process involves the participation of high molecular weight (>10kDa) substances and calcium ions.