Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 12(8): e1006263, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27541584

RESUMEN

Correct developmental timing is essential for plant fitness and reproductive success. Two important transitions in shoot development-the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition-are mediated by a group of genes targeted by miR156, SQUAMOSA PROMOTER BINDING PROTEIN (SBP) genes. To determine the developmental functions of these genes in Arabidopsis thaliana, we characterized their expression patterns, and their gain-of-function and loss-of-function phenotypes. Our results reveal that SBP-LIKE (SPL) genes in Arabidopsis can be divided into three functionally distinct groups: 1) SPL2, SPL9, SPL10, SPL11, SPL13 and SPL15 contribute to both the juvenile-to-adult vegetative transition and the vegetative-to-reproductive transition, with SPL9, SP13 and SPL15 being more important for these processes than SPL2, SPL10 and SPL11; 2) SPL3, SPL4 and SPL5 do not play a major role in vegetative phase change or floral induction, but promote the floral meristem identity transition; 3) SPL6 does not have a major function in shoot morphogenesis, but may be important for certain physiological processes. We also found that miR156-regulated SPL genes repress adventitious root development, providing an explanation for the observation that the capacity for adventitious root production declines as the shoot ages. miR156 is expressed at very high levels in young seedlings, and declines in abundance as the shoot develops. It completely blocks the expression of its SPL targets in the first two leaves of the rosette, and represses these genes to different degrees at later stages of development, primarily by promoting their translational repression. These results provide a framework for future studies of this multifunctional family of transcription factors, and offer new insights into the role of miR156 in Arabidopsis development.


Asunto(s)
Arabidopsis/genética , MicroARNs/genética , Desarrollo de la Planta/genética , Proteínas/genética , Arabidopsis/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/biosíntesis , Familia de Multigenes/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Proteínas/metabolismo
2.
Genes Dev ; 24(11): 1119-32, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516197

RESUMEN

The Arabidopsis histone deacetylase HDA6 is required to silence transgenes, transposons, and ribosomal RNA (rRNA) genes subjected to nucleolar dominance in genetic hybrids. In nonhybrid Arabidopsis thaliana, we show that a class of 45S rRNA gene variants that is normally inactivated during development fails to be silenced in hda6 mutants. In these mutants, symmetric cytosine methylation at CG and CHG motifs is reduced, and spurious RNA polymerase II (Pol II) transcription occurs throughout the intergenic spacers. The resulting sense and antisense spacer transcripts facilitate a massive overproduction of siRNAs that, in turn, direct de novo cytosine methylation of corresponding gene sequences. However, the resulting de novo DNA methylation fails to suppress Pol I or Pol II transcription in the absence of HDA6 activity; instead, euchromatic histone modifications typical of active genes accumulate. Collectively, the data reveal a futile cycle of unregulated transcription, siRNA production, and siRNA-directed DNA methylation in the absence of HDA6-mediated histone deacetylation. We propose that spurious Pol II transcription throughout the intergenic spacers in hda6 mutants, combined with losses of histone deacetylase activity and/or maintenance DNA methylation, eliminates repressive chromatin modifications needed for developmental rRNA gene dosage control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Citosina/metabolismo , ADN Polimerasa II/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes de ARNr/genética , Histona Desacetilasas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Arabidopsis/genética , ADN Intergénico/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Histona Desacetilasas/genética , Histonas/metabolismo , Metilación , Mutación
3.
J Biol Chem ; 286(44): 38184-38189, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21908611

RESUMEN

SQN (SQUINT) is the Arabidopsis ortholog of the immunophilin CyP40 (cyclophilin 40) and promotes microRNA activity by promoting the activity of AGO1. In animals and Saccharomyces cerevisiae, CyP40 promotes protein activity in association with the protein chaperone Hsp90. To determine whether CyP40 also acts in association with Hsp90 in plants, we examined the interaction between SQN and Hsp90 in vitro and tested the importance of this interaction for the function of SQN in planta. We found that SQN interacts with cytoplasmic Hsp90 proteins but not with Hsp90 proteins localized to chloroplasts, mitochondria, or the endoplasmic reticulum. The interaction between SQN and Hsp90 in vitro requires the MEEVD domain of Hsp90, as well as several conserved amino acids within the tetratricopeptide repeat domain of SQN. Amino acid substitutions that disrupt the interaction between SQN and Hsp90 in vitro also impair the activity of SQN in planta. Our results indicate that the interaction between CyP40 and Hsp90 is conserved in plants and that this interaction is essential for the function of CyP40.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Ciclofilinas/química , Regulación de la Expresión Génica de las Plantas , Proteínas HSP90 de Choque Térmico/química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Western Blotting , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Escherichia coli/metabolismo , Silenciador del Gen , Inmunoprecipitación , MicroARNs/metabolismo , Datos de Secuencia Molecular , Fenotipo , Homología de Secuencia de Aminoácido
4.
Plant J ; 52(4): 615-26, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17877703

RESUMEN

In genetic hybrids displaying nucleolar dominance, acetylation of lysines 5, 8, 12 and 16 of histone H4 (H4K5, H4K8, H4K12, H4K16) and acetylation of histone H3 on lysines 9 and 14 (H3K9, H3K14) occurs at the promoters of active ribosomal RNA (rRNA) genes, whereas silenced rRNA genes are deacetylated. Likewise, histone hyperacetylation correlates with the active state of transgenes and of endogenous plant genes involved in physiological processes, including cold tolerance, light-responsiveness and flowering. To investigate histone hyperacetylation dynamics we used sodium butyrate, a histone deacetylase inhibitor known to switch silent rRNA genes on, in order to enrich the pool of acetylated histones. Mass spectrometric analyses revealed unique mono- (K16Ac), di- (K12Ac, K16Ac), tri- (K8Ac, K12Ac, K16Ac), and tetra-acetylated (K5Ac, K8Ac, K12Ac, K16Ac) histone H4 isoforms, suggesting that H4 hyperacetylation occurs in a processive fashion, beginning with lysine 16 and ending with lysine 5. Using a combination of molecular and mass spectrometric assays we then determined the specificities of seven of the nine functional co-activator type histone acetyltransferases (HATs) in Arabidopsis thaliana: specifically HATs of the CBP (HAC1, HAC5, HAC12), GNAT (HAG1, HAG2), and MYST families (HAM1, HAM2). Specific HATs acetylate histone H4K5 (HAM1, HAM2), H4K12 (HAG2), and H3K14 (HAG1), suggesting that acetylation of these lysines may have special regulatory significance. Other acetylation events, including histone H3K9 acetylation, are likely to result from the activities of the broad-specificity HAC1, HAC5, and HAC12 histone acetyltransferases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Acetilación , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/genética , Plantas Modificadas Genéticamente , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Activación Transcripcional
5.
Mol Microbiol ; 60(3): 563-77, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16629661

RESUMEN

Genetic analysis has indicated that the system II pathway for c-type cytochrome biogenesis in Bordetella pertussis requires at least four biogenesis proteins (CcsB, CcsA, DsbD and CcsX). In this study, the eight genes (ccmA-H) associated with the system I pathway in Escherichia coli were deleted. Using B. pertussis cytochrome c4 as a reporter for cytochromes c assembly, it is demonstrated that a single fused ccsBA polypeptide can replace the function of the eight system I genes in E. coli. Thus, the CcsB and CcsA membrane complex of system II is likely to possess the haem delivery and periplasmic cytochrome c-haem ligation functions. Using recombinant system II and system I, both under control of IPTG, we have begun to study the capabilities and characteristics of each system in the same organism (E. coli). The ferrochelatase inhibitor N-methylprotoporphyrin was used to modulate haem levels in vivo and it is shown that system I can use endogenous haem at much lower levels than system II. Additionally, while system I encodes a covalently bound haem chaperone (holo-CcmE), no covalent intermediate has been found in system II. It is shown that this allows system I to use holo-CcmE as a haem reservoir, a capability system II does not possess.


Asunto(s)
Citocromos c1/biosíntesis , Citocromos c2/biosíntesis , Escherichia coli/enzimología , Hemo/metabolismo , Proteínas Recombinantes/biosíntesis , Secuencia de Aminoácidos , Bordetella pertussis/enzimología , Bordetella pertussis/genética , Grupo Citocromo c/química , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Citocromos c1/genética , Citocromos c2/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferroquelatasa/antagonistas & inhibidores , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Protoporfirinas/farmacología , Proteínas Recombinantes/genética
6.
Plant J ; 45(4): 616-29, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16441352

RESUMEN

Gateway cloning technology facilitates high-throughput cloning of target sequences by making use of the bacteriophage lambda site-specific recombination system. Target sequences are first captured in a commercially available "entry vector" and are then recombined into various "destination vectors" for expression in different experimental organisms. Gateway technology has been embraced by a number of plant laboratories that have engineered destination vectors for promoter specificity analyses, protein localization studies, protein/protein interaction studies, constitutive or inducible protein expression studies, gene knockdown by RNA interference, or affinity purification experiments. We review the various types of Gateway destination vectors that are currently available to the plant research community and provide links and references to enable additional information to be obtained concerning these vectors. We also describe a set of "pEarleyGate" plasmid vectors for Agrobacterium-mediated plant transformation that translationally fuse FLAG, HA, cMyc, AcV5 or tandem affinity purification epitope tags onto target proteins, with or without an adjacent fluorescent protein. The oligopeptide epitope tags allow the affinity purification, immunolocalization or immunoprecipitation of recombinant proteins expressed in vivo. We demonstrate the utility of pEarleyGate destination vectors for the expression of epitope-tagged proteins that can be affinity captured or localized by immunofluorescence microscopy. Antibodies detecting the FLAG, HA, cMyc and AcV5 tags show relatively little cross-reaction with endogenous proteins in a variety of monocotyledonous and dicotyledonous plants, suggesting broad utility for the tags and vectors.


Asunto(s)
Vectores Genéticos , Genómica , Plantas/genética , Proteómica , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía de Afinidad , ADN de Plantas , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA