Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-33619059

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, is an urgent global health problem requiring new drugs, new drug targets and an increased understanding of antibiotic resistance. We have determined the mode of resistance to a series of arylamide compounds in M. tuberculosis We isolated M. tuberculosis resistant mutants to two arylamide compounds which are inhibitory to growth under host-relevant conditions (butyrate as a sole carbon source). Thirteen mutants were characterized, and all had mutations in Rv2571c; mutations included a premature stop codon and frameshifts as well as non-synonymous polymorphisms. We isolated a further ten strains with mutations in Rv2571c with resistance. Complementation with a wild-type copy of Rv2571c restored arylamide sensitivity. Over-expression of Rv2571c was toxic in both wild-type and mutant backgrounds. We constructed M. tuberculosis strains with an unmarked deletion of the entire Rv2571c gene by homologous recombination and confirmed that these were resistant to the arylamide series. Rv2571c is a member of the aromatic amino acid transport family and has a fusaric acid resistance domain which is associated with compound transport. Since loss or inactivation of Rv2571c leads to resistance, we propose that Rv2571c is involved in the import of arylamide compounds.

2.
Microbiology (Reading) ; 165(5): 492-499, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30775961

RESUMEN

Bacterial persisters are a subpopulation of cells that exhibit phenotypic resistance during exposure to a lethal dose of antibiotics. They are difficult to target and thought to contribute to the long treatment duration required for tuberculosis. Understanding the molecular and cellular biology of persisters is critical to finding new tuberculosis drugs that shorten treatment. This review focuses on mycobacterial persisters and describes the challenges they pose in tuberculosis therapy, their characteristics and formation, how persistence leads to resistance, and the current approaches being used to target persisters within mycobacterial drug discovery.


Asunto(s)
Antituberculosos/farmacología , Descubrimiento de Drogas , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología
3.
Drug Dev Res ; 80(5): 566-572, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30893501

RESUMEN

There is an urgent need for new treatments effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. The 8-hydroxyquinoline series is a privileged scaffold with anticancer, antifungal, and antibacterial activities. We conducted a structure-activity relationship study of the series regarding its antitubercular activity using 26 analogs. The 8-hydroxyquinolines showed good activity against M. tuberculosis, with minimum inhibitory concentrations (MIC90) of <5 µM for some analogs. Small substitutions at C5 resulted in the most potent activity. Substitutions at C2 generally decreased potency, although a sub-family of 2-styryl-substituted analogs retained activity. Representative compounds demonstrated bactericidal activity against replicating M. tuberculosis with >4 log kill at 10× MIC over 14 days. The majority of the compounds demonstrated cytotoxicity (IC50 of <100 µM). Further development of this series as antitubercular agents should address the cytotoxicity liability. However, the 8-hydroxyquinoline series represents a useful tool for chemical genomics to identify novel targets in M. tuberculosis.


Asunto(s)
Antituberculosos/síntesis química , Hidroxiquinolinas/síntesis química , Mycobacterium tuberculosis/crecimiento & desarrollo , Oxiquinolina/análogos & derivados , Animales , Antituberculosos/química , Antituberculosos/farmacología , Chlorocebus aethiops , Células Hep G2 , Humanos , Hidroxiquinolinas/química , Hidroxiquinolinas/farmacología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Células Vero
4.
Artículo en Inglés | MEDLINE | ID: mdl-29632008

RESUMEN

The imidazopyridines are a promising new class of antitubercular agents with potent activity in vitro and in vivo We isolated mutants of Mycobacterium tuberculosis resistant to a representative imidazopyridine; the mutants had large shifts (>20-fold) in MIC. Whole-genome sequencing revealed mutations in Rv1339, a hypothetical protein of unknown function. We isolated mutants resistant to three further compounds from the series; resistant mutants isolated from two of the compounds had single nucleotide polymorphisms in Rv1339 and resistant mutants isolated from the third compound had single nucleotide polymorphisms in QcrB, the proposed target for the series. All the strains were resistant to two compounds, regardless of the mutation, and a strain carrying the QcrB T313I mutation was resistant to all of the imidazopyridine derivatives tested, confirming cross-resistance. By monitoring pH homeostasis and ATP generation, we confirmed that compounds from the series were targeting QcrB; imidazopyridines disrupted pH homeostasis and depleted ATP, providing further evidence of an effect on the electron transport chain. A representative compound was bacteriostatic against replicating bacteria, consistent with a mode of action against QcrB. The series had a narrow inhibitory spectrum, with no activity against other bacterial species. No synergy or antagonism was seen with other antituberculosis drugs under development. In conclusion, our data support the hypothesis that the imidazopyridine series functions by reducing ATP generation via inhibition of QcrB.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antituberculosos/farmacología , Imidazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Piridinas/farmacología , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación/genética , Secuenciación Completa del Genoma
5.
Bioorg Med Chem Lett ; 28(10): 1758-1764, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29680666

RESUMEN

Despite increased research efforts to find new treatments for tuberculosis in recent decades, compounds with novel mechanisms of action are still required. We previously identified a series of novel aryl-oxadiazoles with anti-tubercular activity specific for bacteria using butyrate as a carbon source. We explored the structure activity relationship of this series. Structural modifications were performed in all domains to improve potency and physico-chemical properties. A number of compounds displayed sub-micromolar activity against M. tuberculosis utilizing butyrate, but not glucose as the carbon source. Compounds showed no or low cytotoxicity against eukaryotic cells. Three compounds were profiled in mouse pharmacokinetic studies. Plasma clearance was low to moderate but oral exposure suggested solubility-limited drug absorption in addition to first pass metabolism. The presence of a basic nitrogen in the linker slightly increased solubility, and salt formation optimized aqueous solubility. Our findings suggest that the 1,3,4-oxadiazoles are useful tools and warrant further investigation.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad
7.
Antimicrob Agents Chemother ; 60(6): 3608-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27044545

RESUMEN

Mycobacterium tuberculosis is a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity against M. tuberculosis grown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity against M. tuberculosis but which lacked cytotoxicity against mammalian cells.


Asunto(s)
Antituberculosos/farmacología , Ácido Butírico/metabolismo , Medios de Cultivo/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antituberculosos/química , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Medios de Cultivo/química , Glucosa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Isoniazida/farmacología , Kanamicina/farmacología , Levofloxacino/farmacología , Redes y Vías Metabólicas/fisiología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Oxadiazoles/química , Bibliotecas de Moléculas Pequeñas/química , Especificidad de la Especie , Relación Estructura-Actividad , Células Vero
8.
Infect Immun ; 80(12): 4143-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22966048

RESUMEN

The Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, contains a recently discovered noncoding RNA, lpr0035. lpr0035 straddles the 5' chromosomal junction of a 45-kbp mobile genetic element, pLP45, which can exist as an episome or integrated in the bacterial chromosome. A 121-bp deletion was introduced in strain JR32, a Philadelphia-1 derivative. The deletion inactivated lpr0035, removed the 49-bp direct repeat at the 5' junction of pLP45, and locked pLP45 in the chromosome. Intracellular multiplication of the deletion mutant was decreased by nearly 3 orders of magnitude in Acanthamoeba castellanii amoebae and nearly 2 orders of magnitude in J774 mouse macrophages. Entry of the deletion mutant into amoebae and macrophages was decreased by >70%. The level of entry in both hosts was restored to that in strain JR32 by plasmid copies of two open reading frames immediately downstream of the 5' junction and plasmid lpr0035 driven by its endogenous promoter. When induced from a tac promoter, plasmid lpr0035 completely reversed the intracellular multiplication defect in macrophages but was without effect in amoebae. These data are the first evidence of a role for noncoding RNA lpr0035, which has homologs in six other Legionella genomes, in entry of L. pneumophila into amoebae and macrophages and in host-specific intracellular multiplication. The data also demonstrate that deletion of a direct-repeat sequence restricts the mobility of pLP45 and is a means of studying the role of pLP45 mobility in Legionella virulence phenotypes.


Asunto(s)
Proteínas Bacterianas/genética , Legionella pneumophila/patogenicidad , ARN no Traducido/genética , Virulencia/genética , Acanthamoeba castellanii/microbiología , Animales , Secuencia de Bases , Línea Celular , Legionella pneumophila/genética , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/microbiología , Ratones , Datos de Secuencia Molecular , Fenotipo , Eliminación de Secuencia
9.
Front Chem ; 9: 613349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996738

RESUMEN

The identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against Mycobacterium tuberculosis. Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC90 is the concentration at which M. tuberculosis growth is inhibited by 90% (IC90 < 5 µM). We conducted a structure-activity relationship investigation for this series. We designed and synthesized an additional 44 molecules and tested all analogs for activity against M. tuberculosis and cytotoxicity against the HepG2 cell line. Substitution at the 5-position of the pyrimidinone with a wide range of groups, including branched and straight chain alkyl and benzyl groups, resulted in active molecules. Trifluoromethyl was the preferred group at the 6-position, but phenyl and benzyl groups were tolerated. The 2-pyridyl group was required for activity; substitution on the 5-position of the pyridyl ring was tolerated but not on the 6-position. Active molecules from the series demonstrated low selectivity, with cytotoxicity against eukaryotic cells being an issue. However, there were active and non-cytotoxic molecules; the most promising molecule had an MIC (IC90) of 4.9 µM with no cytotoxicity (IC50 > 100 µM). The series was inactive against Gram-negative bacteria but showed good activity against Gram-positive bacteria and yeast. A representative molecule from this series showed rapid concentration-dependent bactericidal activity against replicating M. tuberculosis bacilli with ~4 log kill in <7 days. Overall the biological properties were promising, if cytotoxicity could be reduced. There is scope for further medicinal chemistry optimization to improve the properties without major change in structural features.

10.
PLoS One ; 14(10): e0222970, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31589621

RESUMEN

There is an urgent need for new anti-tubercular agents which can lead to a shortened treatment time by targeting persistent or non-replicating bacilli. In order to assess compound activity against non-replicating Mycobacterium tuberculosis, we developed a method to detect the bactericidal activity of novel compounds within 7 days. Our method uses incubation at low pH in order to induce a non-replicating state. We used a strain of M. tuberculosis expressing luciferase; we first confirmed the linear relationship between luminescence and viable bacteria (determined by colony forming units) under our assay conditions. We optimized the assay parameters in 96-well plates in order to achieve a reproducible assay. Our final assay used M. tuberculosis in phosphate-citrate buffer, pH 4.5 exposed to compounds for 7 days; viable bacteria were determined by luminescence. We recorded the minimum bactericidal concentration at pH 4.5 (MBC4.5) representing >2 logs of kill. We confirmed the utility of the assay with control compounds. The ionophores monensin, niclosamide, and carbonyl cyanide 3-chlorophenylhydrazone and the anti-tubercular drugs pretomanid and rifampicin were active, while several other drugs such as isoniazid, ethambutol, and linezolid were not.


Asunto(s)
Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Estrés Fisiológico , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Luciferasas/metabolismo , Luminiscencia , Viabilidad Microbiana/efectos de los fármacos
11.
Tuberculosis (Edinb) ; 102: 3-7, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28061949

RESUMEN

Mycobacterium tuberculosis Rv0560c, a putative benzoquinone methyl transferase, is heavily induced in response to salicylate exposure. It has some similarity to Escherichia coli UbiG, although its role in ubiquinone or menaquinone synthesis is not clear, since M. tuberculosis is not known to produce ubiquinone. We constructed an unmarked in-frame deletion of Rv0560c in M. tuberculosis to determine its role in vitro. Deletion of Rv0560c in M. tuberculosis had no effect on growth in medium containing salicylate or in its ability to grow in macrophages. In addition, no change to compound sensitivity, as determined by minimum inhibitory concentrations, for a range of compounds targeting respiration was noted. Plumbagin, ethambutol and CCCP had the same minimum bactericidal concentration against the deletion and wild-type strains. Taken together these data show that Rv0560c is dispensable under in vitro conditions in both axenic and macrophage culture and suggest that the role of Rv0560c may be in an alternate biosynthetic pathway of menaquinone which is only used under specific growth conditions.


Asunto(s)
Macrófagos/microbiología , Mycobacterium tuberculosis/genética , Antibióticos Antituberculosos/farmacología , División Celular/genética , Células Cultivadas , Medios de Cultivo , Eliminación de Gen , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Salicilatos/farmacología
12.
ACS Omega ; 2(9): 5873-5890, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023755

RESUMEN

Nitazoxanide has antiparasitic and antibiotic activities including activity against Mycobacterium tuberculosis. We prepared and evaluated a set of its analogues to determine the structure-activity relationship, and identified several amide- and urea-based analogues with low micromolar activity against M. tuberculosis in vitro. Pharmacokinetics in the rat suggested a path forward to obtain bioavailable compounds. The series had a good microbiological profile with bactericidal activity in vitro against replicating and nonreplicating M. tuberculosis. Analogues had limited activity against other Gram-positive bacteria but no activity against Gram-negative bacteria. Our studies identified the key liability in this series as cytotoxicity. Future work concentrating on identifying the target(s) could assist in removing activity against eukaryotic cells.

13.
PLoS One ; 11(5): e0155209, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171280

RESUMEN

The 2-aminothiazole series has anti-bacterial activity against the important global pathogen Mycobacterium tuberculosis. We explored the nature of the activity by designing and synthesizing a large number of analogs and testing these for activity against M. tuberculosis, as well as eukaryotic cells. We determined that the C-2 position of the thiazole can accommodate a range of lipophilic substitutions, while both the C-4 position and the thiazole core are sensitive to change. The series has good activity against M. tuberculosis growth with sub-micromolar minimum inhibitory concentrations being achieved. A representative analog was selective for mycobacterial species over other bacteria and was rapidly bactericidal against replicating M. tuberculosis. The mode of action does not appear to involve iron chelation. We conclude that this series has potential for further development as novel anti-tubercular agents.


Asunto(s)
Antituberculosos/síntesis química , Antituberculosos/farmacología , Tiazoles/síntesis química , Tiazoles/farmacología , Animales , Antituberculosos/química , Quelantes del Hierro/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/química , Células Vero
14.
J Med Chem ; 58(18): 7273-85, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26295286

RESUMEN

We conducted an evaluation of the phenoxyalkylbenzimidazole series based on the exemplar 2-ethyl-1-(3-phenoxypropyl)-1H-benzo[d]imidazole for its antitubercular activity. Four segments of the molecule were examined systematically to define a structure-activity relationship with respect to biological activity. Compounds had submicromolar activity against Mycobacterium tuberculosis; the most potent compound had a minimum inhibitory concentration (MIC) of 52 nM and was not cytotoxic against eukaryotic cells (selectivity index = 523). Compounds were selective for M. tuberculosis over other bacterial species, including the closely related Mycobacterium smegmatis. Compounds had a bacteriostatic effect against aerobically grown, replicating M. tuberculosis, but were bactericidal against nonreplicating bacteria. Representative compounds had moderate to high permeability in MDCK cells, but were rapidly metabolized in rodents and human liver microsomes, suggesting the possibility of rapid in vivo hepatic clearance mediated by oxidative metabolism. These results indicate that the readily synthesized phenoxyalkylbenzimidazoles are a promising class of potent and selective antitubercular agents, if the metabolic liability can be solved.


Asunto(s)
Antituberculosos/química , Bencimidazoles/química , Animales , Antituberculosos/síntesis química , Antituberculosos/farmacología , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Chlorocebus aethiops , Simulación por Computador , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Permeabilidad , Ratas , Relación Estructura-Actividad , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA